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ABSTRACT

SELF-FORCE ON POINT PARTICLES IN ORBIT AROUND A
SCHWARZSCHILD BLACK HOLE

Roland Haas Advisor:
University of Guelph, 2008 Professor Eric Poisson

We examine the motion of a point scalar or electromagnetic charge in orbit around a
Schwarzschild black hole. As the particle moves it emits radiation and loses energy
and angular momentum to the radiation field. A small part of this radiation backscat-
ters from the curvature of spacetime and returns to the location of the particle. The
interaction of the particle with this radiation gives rise to a self-force acting on the
particle. Initially this self-force appears to be divergent at the position of the parti-
cle. Similar to the situation in quantum field theory, the field close to the particle
requires renormalization, separating a finite physical contribution from the infinite
renormalizable part. One way of handling the divergence in Schwarzschild spacetime
is the mode-sum scheme introduced by Barack and Ori [1, 2]. We apply their scheme
as well as the singular-regular decomposition of Detweiler and Whiting [3] to the
problem at hand. In doing so we calculate what are commonly called the regulariza-
tion parameters A, B, C and D, extending previous work that only included the A,
B and C terms. In the scalar, electromagnetic and gravitational cases we calculate
the regularization parameters for tetrad components of the field gradient, using only
manifestly scalar quantities in the regularization. We also implement a numerical
scheme to calculate the modes of the full retarded field for the scalar and electro-
magnetic cases. The gravitational case is left for future work, but could employ the
same methods. To this end we use the characteristic grid evolution scheme of Price
and Lousto [4, 5]. In the scalar case we implement a fourth order finite-difference
scheme to calculate the retarded field. Our code can handle both circular and highly
eccentric orbits around the black hole. In the electromagnetic case we only implement
a second order accurate scheme to avoid the technical complexities of a fourth-order
accurate code. We examine the influence of the conservative part of the self-force on
the constants of motion along the orbit.
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Sit up straight

Ladies and Gentlemen of the 1999 incoming masters program: sit up
straight. If I could offer you one tip for the future, sitting up straight
would be it.
Get to know your thesis committee members. You never know when
they are going to go on sabbatical.
Do not read journal papers. They will only make you feel stupid.
Live in Escondido Village once. But leave before it makes you hard.
Live in Rains once. But leave before it makes you soft.
Don’t waste time forwarding emails. Sometimes they’re funny, some-
times they’re not.
The Ph.D. is long and, in the end, you probably won’t earn as much
as your friends who didn’t go to grad school.
You are not as lazy as you think.
Don’t worry about publishing. Or worry, knowing that worrying is as
effective as trying to convince your adviser he/she may be wrong.
Nap.
Accept certain inalienable truths: food is not free. Professors will
belittle. You too will grow bitter and when you do, you’ll fantasize that
when you were a master’s student food was free and your professors
listened to you.
Try to date.
Maybe you’ll graduate, maybe you won’t. Maybe you’ll contribute to
society, maybe you won’t. Maybe you’ll be hooded, maybe you’ll drop
out and get a life. Whatever you do, don’t work too hard. Your thesis
topic is half made up. So is everybody else’s.
But trust me on sitting up straight.
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Chapter 1

Introduction

1.1 Particle motion and self-force

In the test mass limit of general relativity or the test charge limit of electromagnetism
the object moves in a fixed background. The influence of the test object on the
background is neglected and it moves on a geodesic of the background spacetime.
Going beyond the test charge limit, this is no longer true. An electromagnetic or scalar
charge moving around a black hole will emit radiation, part of which backscatters to
the particle’s location and interacts with it. This interaction gives rise to a self-force
acting on the particle which dissipates energy and angular momentum. Therefore
even in the test mass limit a charged object does not move on a geodesic. For an
uncharged massive particle similar effects lead to the appearance of a self-force in
the context of gravitational perturbation theory. While the particle still moves on
a geodesic of the perturbed spacetime generated by it and the central black hole,
it moves on an accelerated world line when its motion is described in terms of the
background black hole geometry.

In this thesis we calculate the self-force acting on a scalar or electromagnetic
charge moving along a prescribed geodesic orbit around a Schwarzschild black hole.
This falls short of a full self-consistent calculation of the self-force since we do not let
the self-force modify the motion of the particle. Instead the force we calculate should
be interpreted as (minus) the force required to counteract the self-force and keep the
particle on its geodesic orbit.

1



CHAPTER 1. INTRODUCTION

1.2 History of self-force calculations

The study of the self-force acting on a point like object is by no means a new field of
research. Its roots reach back to the pioneering work of Abraham [6], Lorentz [7] and
Dirac [8]. Dirac’s work is the first to treat the electron as a point particle and his
treatment of the problem forms the basis of the modern treatments. Dirac’s results
are derived in the context of special relativity. Using energy and momentum balance
across a world tube surrounding the electron he derived its equations of motion. His
well known result from this consideration is that the regularized self-force acting on
the electron is given by

(1.1)mv̇µ = evνf
ν
µ , fµν = F µν

in +
1

2
(F µν

ret − F µν
adv) ,

he half-retarded minus half-advanced force. Here m is the particle’s mass, vµ is its
four velocity, an overdot denotes derivatives with respect to proper time along the
orbit, F µν

in is the Faraday tensor of the external electromagnetic field and Fret/adv are
the retarded and advanced Faraday tensors of the perturbation (see section 5.2.5).

De Witt and Brehme [9] and Hobbs [10] extended Dirac’s treatment to curved
spacetime. They find that the half-retarded minus half-advanced force, while finite at
the location of the particle, does not give the proper self-force acting on the particle.
Instead a tail term encoding contributions from waves travelling within the past light
cone appears. The self-force depends, at least in principle, on the entire past history
of the particle.

No results for the gravitational self-force were known until Mino, Sasaki and
Tanaka [11] and independently Quinn and Wald [12] derived equations, known as
the MiSaTaQuWa equations, for the gravitational self-force acting on a point mass.
Mino, Sasaki and Tanaka provide two independent derivations. One based on [9]
and one based on matched asymptotic expansion. Quinn and Wald’s method is built
around a set of physically motivated axioms supplementing the usual equations of
motion. All three methods yield identical results. Recently several authors [13, 14]
have reproduced these results using effective field theory methods and by considering
the point particle limit of extended bodies.

The standard formulation of the self-force equations in all three cases requires a
split of the retarded field into direct and tail pieces which lacks a physical interpre-
tation as simple and intuitive as the one Dirac gave in his approach. Detweiler and
Whiting [3] gave an alternative decomposition of the retarded field into a singular
field and a regular remainder, equivalent, but not identical to the older decomposi-
tion into direct and tail pieces. Both the singular and the regular fields are solutions
to the wave equation. The regular field corresponds to Dirac’s radiation field, which
is solely responsible for the interaction between the particle and the field.

To employ the MiSaTaQuWa equations in a practical calculation is still a dif-
ficult task since they involve Green functions in curved spacetime and an integral
over the past history of the particle. Barack and Ori [1] and independently Mino,
Nakano and Sasaki [15] developed a practical calculation scheme based on a mode sum
decomposition. Calculations of the self-force on infalling massive particles [16] and
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CHAPTER 1. INTRODUCTION

frequency domain calculation of the force on scalar particles on a circular orbit around
Schwarzschild black holes [17] followed soon afterwards. Detweiler, Messaritaki and
Whiting [18] implemented their singular-regular formalism for scalar charges on a
circular orbit. Barack and Lousto [19] implemented a time domain code based on [4]
to calculate the retarded gravitational perturbation for a particle on circular orbit in
Schwarzschild spacetime. Recently Barack and Sago [20] completed the calculation of
the gravitational self-force on circular orbits in Schwarzschild. The same group [21] is
working towards implementing the mode sum scheme in Kerr spacetime. Alternative
methods directly regularizing the Weyl scalars are also under investigation [22].

All the previous works were restricted to self-forces evaluated on circular orbits.
This thesis reports work first published in [23, 24], and work to be published that
generalizes the calculations to arbitrary geodesic motion around a Schwarzschild black
hole. We develop analytical techniques to implement the mode-sum calculation of the
self-force, and we develop time-domain numerical techniques to integrate the scalar
and electromagnetic wave equations. Combining the ingredients we calculate the
scalar and electromagnetic self-force.

1.3 LISA mission

The Laser I nterferometer Space Antenna is a planned (planned launch date 2018)
space-based gravitational wave detector to be operated jointly by ESA and NASA [25].
Its sensitivity band will span the frequency band of 0.1 mHz < ν < 0.1 Hz, comple-
menting Earth based detectors such as LIGO, VIRGO, GEO and TAMA [26] which
are typically sensitive to frequencies in the 50 Hz < ν < 4 kHz band.

LISA consists of three identical spacecrafts that follow the Earth on its orbit
lagging behind by 23°. The spacecrafts sit at the vertices of an equilateral triangle
whose arms form three Michelson interferometers. The interferometers are used to
measure the displacement of test masses within the bodies of the spacecrafts due
to the passage of gravitational waves. Since the displacement of the test masses
initially scales with the arm length, LISA’s increased arm length when compared to
Earth based detectors makes it much more sensitive to gravitational waves, raising
the signal to noise ratio. Further the comparatively quiet environment in space allows
LISA to look for waves in a frequency band forbidden to Earth based detectors due to
seismic noise. Sources for LISA include [27] binary white dwarf systems in the Milky
Way, massive black hole mergers and finally extreme mass ratio inspirals (EMRI)
where a solar mass object spirals into a massive black hole. Of these sources the white
dwarf binaries are by far the most abundant ones, a fact which is both a blessing and
a curse. They form guaranteed sources for LISA, allowing for a fundamental test
of the equipment and the existence of gravitational waves. On the other hand, seen
from the viewpoint of EMRI’s, the white dwarf binary signals are noise that has to
be dealt with.

LISA’s science goal is the test of Einstein’s theory of general relativity. If LISA
measures no gravitational waves or waves whose properties differ from those predicted
by general relativity, then the theory must be wrong. Beyond just falsifying the theory

3
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LISA will allow for the first time precision measurements of black hole parameters.
EMRIs [27] will allow us to map out the spacetime metric of the central object and to
determine the mass and angular momentum of the central black hole to one part in
104. Similarly the statistical distribution of the binary white dwarf signals will allow
us to make deductions about the distribution of stars in our galaxy.

1.4 Motivation

The inspiral and capture of solar-mass compact objects by supermassive black holes
is one of the most promising and interesting sources of gravitational radiation to
be detected by LISA. Such a system consists of a supermassive black hole of mass
104M⊙ – 106M⊙, such as the ones found at the centre of galaxies, which is orbited
by a small, compact 1M⊙ – 10M⊙ object, such as a neutron star or a small black
hole. These systems form if a star in the halo surrounding the central black hole
of a galaxy is driven from its orbit by interacting with nearby stars and enters an
inspiralling orbit towards the black hole. During its inspiral the small object serves
as a probe for the local spacetime geometry. Information about it is encoded in the
waves that are emitted by the system which can therefore be used can be used to map
out the spacetime. This reconstruction of the spacetime parameters becomes more
accurate the longer the observed wavetrain is, that is the longer the systems emits
waves that lie within LISA’s window of sensitivity. For an extreme mass ratio system
we expect to see about 105 wave cycles per year, which is sufficient to accurately pin
down the parameters describing the central black hole.

In order to detect the weak EMRI signal in the noisy LISA data stream a hier-
archical search algorithm whose final stage consists of a matched filtering has been
proposed [28]. This last phase requires accurate templates which are convoluted with
the data stream. If there is a high degree of correlation, then a signal due to a system
matching the parameters that were used to generate the template is present in the
data, with high probability. For this parameter extraction to be possible, however,
the template must stay in phase with the waveform throughout the inspiral, requiring
very accurate templates. Due to the small mass ratio between the star and the central
black hole, a perturbative analysis that treats the compact object as a point mass
can be employed to reach this accuracy.

In such a treatment the motion of the particle is described in the background
spacetime of the unperturbed central black hole. In this description the particle no
longer moves on a geodesic as it did in the perturbed spacetime. Instead its failure
to move on a geodesic is interpreted as the effect of a self-force acting on the particle.
The self-force is responsible for the particle’s losses of energy and angular momentum,
which will drive the inspiral towards the black hole.

Any self-consistent calculation of the inspiral and the waveforms emitted during
the inspiral has to take this self-force into account. Neglecting it, an observer at in-
finity would detect energy and angular momentum in the gravitational waves without
the source losing equal amounts of energy and angular momentum, violating conser-
vation statements. Also, for parameter extraction purposes the predicted waveforms
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would quickly run out of phase with the real waves.
Of the various methods to generate templates discussed in [29, 30] only the wave-

forms calculated by directly involving the self-force are able to achieve this accuracy.
Waveforms generated by other methods (for example energy balance arguments) are
useful for detection, but cannot be used for parameter extraction. Therefore a practi-
cal calculation of the motion governed by the MiSaTaQuWa equation and the waves
generated by it are of great astrophysical interest.

1.5 This thesis

This thesis is part of the ongoing effort to provide waveform templates for LISA which
include the effects of the self-force. Including these effects is crucial in any scheme
that aims to extract black hole parameters from the experimental data. The holy
grail is the calculation of the waveforms generated by a point mass in orbit around
a Kerr black hole including the influence of its self-force. So far this has proved
to be an elusive goal, although there is now a concerted effort by several groups
to the tackle first steps towards a concrete calculation of the self-force in the Kerr
spacetime [20, 31, 22].

Rather than trying to solve the problem directly, in this thesis we retreat to the
technically simpler problem of a point particle of mass m endowed with a scalar or
electric charge q orbiting a Schwarzschild black hole of mass M ; the particle emits
scalar or electromagnetic radiation, and it is affected by a scalar or electromagnetic
self-force. We implement for the first time a complete calculation of the self-force
on fixed geodesic orbits. We use the regularization procedure of [1, 2] to calculate
regularization parameters for the three cases of a scalar charge, an electric charge
and a small mass. We solve the scalar and electromagnetic wave equations using a
second- or fourth-order finite-difference scheme based on [4, 5].

Since the particle motion is prescribed a priory, we do not implement a full self-
force calculation that lets the force modify the motion of the particle. Instead the
force we calculate should be interpreted as (minus) the force necessary to keep the
particle on the geodesic orbit, to counteract the action of the self-force. For the
electromagnetic and scalar fields considered here, this can always be achieved by
imagining some external non-electromagnetic or non-scalar agent to provide this force.
For gravity such an approach invariable leads to the occurrence of a “strut”, a conical
singularity in spacetime which is responsible for the required force.

Nevertheless we can use our results to draw conclusions on the physical effect of
the self-force, since the departure from the given geodesic to accelerated motion is a
slow process occurring on timescales of the order of a radiation reaction time.

We find that the self-force generically dissipates energy and angular momentum as
expected, and we find that the radial part of the self-force points away from the black
hole. In fact, for the scalar case Diaz-Rivera, Messaritaki, Whiting and Detweiler [32]
showed that the effect of the conservative self-force is to move the innermost stable
orbit closer to the black hole. We perform a similar analysis for eccentric orbits of
an electromagnetic charge. We find that the effect of the conservative piece of the
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self-force is important.

1.6 Organization

Chapter 2 introduces the theoretical concepts which this work is based on. We do
not aim to give a thorough treatment of the topics covered; instead we give just
enough information to understand the origin of the formulae used in this thesis. We
begin with a short review of bi-tensors in curved spacetime. We introduce Synge’s
world function σ(x, x′), the parallel propagator gα

′

β(x, x
′) and methods to covariantly

expand bi-tensors around a point x. In this we follow the treatment in [33]. We further
introduce the concept of retarded and advanced Green functions in curved spacetime
and derive a formal expression for the singular field of the particle.

Chapter 3 contains our first set of results, regularization parameters for a particle
on arbitrary geodesic orbits of Schwarzschild spacetime. To meet this goal we find an
expansion of the singular field around the position of the particle. We display results
for the three cases of scalar, electromagnetic and gravitational fields. In appendix E
we also outline the changes required to accommodate an accelerated world line and
display regularization parameters for this case too.

Chapter 4 describes the numerical methods we used to calculate the modes of
the scalar and electromagnetic fields, respectively. In the first part of the chapter we
describe the second and fourth-order finite-difference finite-difference schemes that
were used in the scalar case. In the second part we introduce the second-order finite-
difference schemes that were used in the electromagnetic case. We implement schemes
to calculate either the vector potential Aα or the Faraday tensor Fαβ . The first
method closely parallels the treatment necessary for gravity, while the second serves
as an independent test of the numerical method. We also present results of numerical
tests of the convergence properties of our code.

Chapter 5 contains our main results for the scalar and electromagnetic self-forces.
We calculate each self-force for selected orbits and verify that analytical and numerical
calculations tie into each other as expected. We also display results for the effect of
the conservative self-force on the orbital parameters in the electromagnetic case.

Chapter 6 gives some concluding remarks and suggests future projects.
Appendix A reviews the symbols used in the thesis and further appendices contain

technical results that need not be presented in the main text.
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Chapter 2

Theoretical framework

In this section we introduce the methods and concepts used in the remainder of the
thesis. Almost all of the material in this section can be found in [33].

2.1 Bi-tensors in curved spacetime

When dealing with Green functions in curved spacetime, as we will do later in this
section, it is advantageous to introduce the concept of bi-tensors, tensor valued func-
tions of two coordinates x and x̄ as done in [33]. Such a function can have different
tensorial structures at the two points, for example it can be a vector at x but a scalar
at x̄. We use this fact extensively in our calculation. We will require that x and x̄
are in a normal neighbourhood of each other, implying that for any two points there
is a unique geodesic

(2.1)β : λ 7→ zµ(λ)

parametrized by an affine parameter λ which links links them together as indicated
in Fig. 2.1.

2.1.1 Synge’s world function

A particularly useful bi-tensor is Synge’s world function σ(x, x̄), which is numerically
equal to half the squared geodesic distance between x and x̄. In terms of the tangent
vector tµ ≡ dzµ

dλ
along the (unique) geodesic linking the two points, the world function

7
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x′′

x̄

x′

x

γ

τ

β, λ

Figure 2.1: World line γ of the particle and geodesic β linking the field point x off
the world line with the point x̄ on the world line. Also shown are the retarded x′ and
advanced points x′′.

can be written as

(2.2)σ(x, x̄) =
1

2
(λ1 − λ0)

∫ λ1

λ0

gµνt
µtν dλ =

1

2
ς(λ1 − λ0)

2 ,

where z(λ0) = x̄, z(λ1) = x and

(2.3)ς ≡ gµνt
µtν = ±1, 0 ,

along spacelike, timelike and null geodesics respectively.

Derivatives of the world function

Since σ is a bi-scalar distinct derivatives with respect to x and x̄ can be defined,

(2.4)σα ≡ ∂σ

∂xα
, σᾱ ≡ ∂σ

∂xᾱ
.

Here and in the following, unbarred indices α, β, . . . refer to tensors at x while barred
indices ᾱ, β̄, . . . refer to tensors at x̄. Indices µ, ν, . . . refer to a generic point on the
geodesic. Similar to the first derivatives defined in Eq. (2.4) higher derivatives of any
order can be defined; for example

(2.5)σαβγ̄ ≡ ∇γ̄∇β∇ασ ,

which is a two-tensor at x and a (dual-)vector at x̄.
Poisson [33] derives an expression linking the derivative of σ(x, x̄) to the tangent

vector of the geodesic linking x and x̄, his Eqs. (55) and (56). They read

(2.6a)σα = (λ1 − λ0)tα ,

8
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and
(2.6b)σᾱ = −(λ1 − λ0)tᾱ .

Up to the factor involving the difference in the affine parameter, σα and σᾱ are the
tangent vectors along the geodesic at x or x̄.

Interestingly, we can express the world function in terms of its derivatives. Com-
paring Eq. (2.2) and Eqs. (2.6a), (2.6b) it is easy to see that

(2.7)gαβσασβ = 2σ , and gᾱβ̄σᾱσβ̄ = 2σ .

We will use this relationship extensively in section 2.2.1 to derive coincidence limits
for σ and its derivatives.

2.1.2 Parallel propagator

A tensor T µν of arbitrary index structure is said to be parallel transported along a
geodesic β if along β

(2.8)T µν;λt
λ = 0 .

Its behaviour along the geodesic is completely described by the action of the par-
allel propagator gαᾱ defined in terms of the change of an arbitrary vector parallel
transported from x̄ to x

(2.9)vα ≡ gαᾱv
ᾱ .

This is well defined as a linear map from vectors at x̄ to vectors at x since the parallel
transport equation (2.8) is linear. Similarly, a parallel propagator transporting vectors
from x to x̄ can be defined via

(2.10)vᾱ ≡ gᾱαv
α .

Clearly parallel transporting a vector from x to x̄ and back to x is an identity
operation that does not change the vector. Hence

(2.11)gαᾱg
ᾱ
β = δαβ , and gᾱαg

α
ᾱ = δᾱβ̄ .

Similarly the parallel propagator itself is parallel transported along the geodesic, so

(2.12)gᾱα;βt
β = gᾱα;β̄t

β̄ = 0 , gαᾱ;βt
β = gαᾱ;β̄t

β̄ = 0 .

This property becomes obvious if one considers (for a parallel transported vector vµ)

(2.13)0 = vα;βt
β =

(

gαᾱv
ᾱ
)

;β
tβ = gαᾱ;βt

βvᾱ ,

which yields the proposition since vµ is arbitrary.
Note that these properties can be formally proved using a tetrad e(µ)

α parallel
transported along the geodesic and writing the parallel propagator as

(2.14)gαᾱ = e(µ)
αe

ᾱ
(µ)

in terms of the tetrad and its dual [33].
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2.2 Covariant expansion of bi-tensors

Since we are eventually interested in an expansion of the (scalar, electromagnetic and
gravitational) fields around a base point x̄, we need expansions of bi-tensors that are
similar to Taylor expansions in flat spacetime. Given that σᾱ is the closest thing to
a distance vector (x− x̄)α, we seek an expansion in terms of σᾱ.

2.2.1 Coincidence limits

In finding expansions for bi-tensors around x̄ we will require the values of the tensor
and its derivatives at coincidence x = x̄, which we denote by

(2.15)[Tµν(x, x̄)] ≡ lim
x→x̄

Tµν(x, x̄) .

Further we need expressions for the coincidence limits of σᾱ and its derivatives as well
as gαᾱ and its derivatives. These are derived in [33] by continued differentiations of
Eqs. (2.7), (2.12) and careful use of Synge’s rule

(2.16)[σ...ᾱ] = [σ...] ;ᾱ − [σ...α] ,

where “· · ·” is any combination of barred and unbarred indices. A proof of Synge’s
rule can be found in [33].

Clearly, from Eqs. (2.2), (2.6a), (2.6b), the world function and its first derivatives
vanish at coincidence

(2.17)[σ] = 0 , [σα] = 0 , and [σᾱ] = 0 .

The remaining coincidence limits are

(2.18a)[σαβ ] = gᾱβ̄ ,

(2.18b)
[
σαβ̄

]
= [σα] ;β̄ − [σαβ ] = −gᾱβ̄ ,

(2.18c)
[
σᾱβ̄

]
= [σᾱ] ;β̄ − [σᾱβ ] = gᾱβ̄ ,

and
(2.18d)[σᾱβ] = [σβᾱ] = −gᾱβ̄ .

As well as
(2.19)[σαβγ ] = [σαβγ̄ ] =

[
σαβ̄γ̄

]
=

[
σᾱβ̄γ̄

]
= 0 .

Finally using

(2.20)
σαβγδ = σεαβγδσε + σεαβγσεδ + σεαβδσεγ + σεαββσεβ

+ σεαβσεγδ + σεαγσεβδ + σεαδσεβγ + σεασεβγδ ,

the coincidence limits for σαβγδ are

(2.21a)[σαβγδ] = −1

3

(

Rᾱγ̄β̄δ̄ +Rᾱδ̄β̄γ̄

)

,

(2.21b)
[
σαβγδ̄

]
=

1

3

(

Rᾱγ̄β̄δ̄ +Rᾱδ̄β̄γ̄

)

,

(2.21c)
[
σαβγ̄δ̄

]
= −1

3

(

Rᾱγ̄β̄δ̄ +Rᾱδ̄β̄γ̄

)

,

(2.21d)
[
σαβ̄γ̄δ̄

]
= −1

3

(

Rᾱβ̄γ̄δ̄ +Rᾱγ̄β̄δ̄

)

,

10



CHAPTER 2. THEORETICAL FRAMEWORK

and

(2.21e)
[
σᾱβ̄γ̄δ̄

]
= −1

3

(

Rᾱγ̄β̄δ̄ +Rᾱδ̄β̄γ̄

)

.

The last coincidence limit we require is for σαβγδε obtainable from taking four deriva-
tives of Eq. (2.7). It is slightly easier to consider taking one additional derivative of
Eq. (2.20) using the fact that at coincidence any terms containing σα and σαβγ vanish
and a term σαβ turns into the metric. Doing so we find

(2.22)0 = [σεαβγδ] + [σαδβγε] + [σαγβδε] + [σαβγδε] ,

and eventually after invoking Ricci’s identity, the symmetries of the Riemann tensor
and Synge’s rule as done in [33] we find

(2.23a)
[σαβγδε] = −1

4

(

Rᾱε̄β̄γ̄;δ̄ +Rᾱε̄β̄δ̄;γ̄ +Rᾱδ̄β̄γ̄;ε̄ +Rᾱδ̄ε̄;γ̄

+Rᾱγ̄β̄δ̄;ε̄ +Rᾱγ̄β̄ε̄;δ̄

)

,

(2.23b)

[
σαβ̄γδε

]
= − 1

12

(

Rᾱδ̄γ̄ε̄;β̄ +Rᾱε̄γ̄δ̄;β̄

)

+
1

4

(

Rᾱβ̄γ̄δ̄;ε̄ +Rᾱβ̄γ̄δ̄;ε̄

)

+
1

4

(

Rᾱβ̄γ̄ε̄;δ̄ +Rᾱε̄γ̄β̄;δ̄

)

,

(2.23c)

[
σαβ̄γ̄δε

]
=

1

12

(

Rᾱε̄δ̄γ̄;β̄ +Rᾱγ̄δ̄ε̄;β̄

)

+
1

12

(

Rᾱε̄δ̄β̄;γ̄ +Rᾱβ̄δ̄ε̄;γ̄

)

− 1

4

(

Rᾱβ̄δ̄γ̄;ε̄ +Rᾱγ̄δ̄β̄;ε̄

)

,

(2.23d)

[
σαβ̄γ̄δ̄ε

]
= − 1

12

(

Rᾱβ̄ε̄γ̄;δ̄ +Rᾱγ̄ε̄β̄;δ̄

)

− 1

12

(

Rᾱδ̄ε̄γ̄;β̄ +Rᾱδ̄ε̄γ̄;β̄

)

− 1

12

(

Rᾱδ̄ε̄β̄;γ̄ +Rᾱβ̄ε̄δ̄;γ̄

)

,

(2.23e)

[
σαβ̄γ̄δ̄ε̄

]
= −1

3

(

Rᾱβ̄γ̄δ̄;ε̄ +Rᾱγ̄β̄δ̄;ε̄

)

+
1

12

(

Rᾱβ̄ε̄γ̄;δ̄ +Rᾱγ̄ε̄β̄;δ̄

)

+
1

12

(

Rᾱδ̄ε̄γ̄;β̄ +Rᾱγ̄ε̄δ̄;β̄

)

+
1

12

(

Rᾱδ̄ε̄β̄;γ̄ +Rᾱβ̄ε̄δ̄;γ̄

)

,

and

(2.23f)

[
σᾱβ̄γ̄δ̄ε̄

]
= −1

4

(

Rᾱγ̄β̄δ̄;ε̄ +Rᾱδ̄β̄γ̄;ε̄

)

− 1

4

(

Rᾱε̄β̄γ̄;δ̄ +Rᾱγ̄β̄ε̄;δ̄

)

− 1

4

(

Rᾱε̄β̄δ̄;γ̄ +Rᾱδ̄β̄ε̄;γ̄

)

.

Analogous expressions for the parallel propagator are found by starting from
Eq. (2.12). It is found that

(2.24a)
[

gαβ̄

]

= δᾱβ̄ ,

(2.24b)
[

gαβ̄;γ

]

=
[

gαβ̄;γ̄

]

= 0 ,

(2.24c)
[

gαβ̄;γδ

]

= −
[

gαβ̄;γδ̄

]

=
[

gαβ̄;γ̄δ

]

= −
[

gαβ̄;γ̄δ̄

]

= −1

2
Rᾱ

β̄γ̄δ̄ ,
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and
[

gαβ̄;γδε

]

= −1

3

(

Rᾱ
β̄γ̄δ̄;ε̄ +Rᾱ

β̄γ̄ε̄;δ̄

)

,
[

gαβ̄;γδε̄

]

= −1

6
Rᾱ

β̄γ̄δ̄;ε̄ +
1

3
Rᾱ

β̄γ̄ε̄;δ̄ ,

(2.24d)
[

gαβ̄;γδ̄ε̄

]

=
1

6

(

Rᾱ
β̄γ̄δ̄;ε̄ +Rᾱ

β̄γ̄ε̄;δ̄

)

,
[

gαβ̄;γ̄δ̄ε̄

]

=
1

6

(

Rᾱ
β̄γ̄δ̄;ε̄R

ᾱ
β̄γ̄ε̄;δ̄

)

.

2.2.2 Expansion of Bi-tensors

We have to expand the bi-tensor Tᾱβ̄(x, x̄) around the base point x̄. Since both indices
are barred, Tᾱβ̄ is a scalar at x. An expansion of the form

(2.25)Tᾱβ̄ = Aᾱβ̄ + Aᾱβ̄γ̄σ
γ̄ +

1

2
Aᾱβ̄γ̄δ̄σ

γ̄σδ̄ +
1

6
Aᾱβ̄γ̄δ̄ε̄σ

γ̄σδ̄σε̄ + . . . ,

where the coefficients Aᾱβ̄ etc. are functions of the base point x̄ only, can then be
found [33]. The coefficients are found be evaluating Eq. (2.25) and its derivatives at
coincidence. Doing so the coefficients read

(2.26a)Aᾱβ̄ =
[
Tᾱβ̄

]
,

(2.26b)Aᾱβ̄γ̄ =
[
Tαβ̄;γ̄

]
− Aᾱβ;γ̄ ,

(2.26c)Aᾱβ̄γ̄δ̄ =
[
Tᾱβ̄;γ̄δ̄

]
− Aᾱβ̄;γδ̄ − 2Aᾱβγ;δ̄ ,

and
(2.26d)Aᾱβ̄γ̄δ̄ε̄ =

[
Tᾱβ̄;γ̄δ̄ε̄

]
− Aᾱβ̄;γ̄δ̄ε̄ − 3Aᾱβ̄γ̄;δ̄ε̄ − 3Aᾱβ̄γ̄δ̄;ε̄ .

Our expressions for the coefficients differ slightly from those found in [33] in that we
have made use of the fact that the indices γ̄, δ̄, and ε̄ can be freely moved around
since they are contracted with copies of σᾱ, as well as symmetries of the Riemann
tensor.

We next have to expand the bi-tensor Tαβ̄(x, x̄) around the base point x̄. Since
only one index is barred, Tᾱβ is a vector at x. Repeating the procedure outlined
in [33] we define an auxiliary tensor T̃ᾱβ̄ ≡ gαᾱTαβ̄ to which the procedure of outlined
above can be applied. We find expansion coefficients

(2.27a)Bᾱβ̄ =
[
Tαβ̄

]
,

(2.27b)Bᾱβ̄γ̄ =
[
Tαβ̄;γ̄

]
− Bᾱβ̄;γ̄ ,

(2.27c)Bᾱβ̄γ̄δ̄ =
[
Tαβ̄;γ̄δ̄

]
− Bᾱβ̄;γ̄δ̄ − 2Bᾱβ̄γ̄;δ̄

and
(2.27d)Bᾱβ̄γ̄δ̄ε̄ =

[
Tαβ̄;γ̄δ̄ε̄

]
−Bᾱβ̄;γ̄δ̄ε̄ − 3Bᾱβ̄γ̄;δ̄ε̄ − 3Bᾱβ̄γ̄δ̄;ε̄ ,

which again differ from the expressions displayed in [33] due to our use of the fact
that the indices γ̄, δ̄, and ε̄ can be freely moved around since they are contracted
with copies of σᾱ.
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Finally we want to expand the bi-tensor Tαβ(x, x̄) around the base point x̄. Since
no index is barred, Tαβ is a two-tensor at x. Repeating the procedure outlined in [33]
to define an auxiliary tensor T̃ᾱβ̄ ≡ gαᾱg

β
β̄
Tαβ to which the procedure outlined above

can be applied. We find expansion coefficients

(2.28a)Cᾱβ̄ = [Tαβ ] ,

(2.28b)Cᾱβ̄γ̄ = [Tαβ;γ̄] − Cᾱβ̄;γ̄ ,

(2.28c)Cᾱβ̄γ̄δ̄ =
[
Tαβ;γ̄δ̄

]
− Cᾱβ̄;γ̄δ̄ − 2Cᾱβ̄γ̄;δ̄

and
(2.28d)Cᾱβ̄γ̄δ̄ε̄ =

[
Tαβ;γ̄δ̄ε̄

]
− Cᾱβ̄;γ̄δ̄ε̄ − 3Cᾱβ̄γ̄;δ̄ε̄ − 3Cᾱβ̄γ̄δ̄;ε̄ ,

which again differ from the expressions displayed in [33] due to our use of the fact
that the indices γ̄, δ̄, and ε̄ can be freely moved around since they are contracted
with copies of σᾱ.

We note in passing that the main results Eqs. (2.26), (2.27), and (2.28) are identi-
cal since the differences that might stem from the presence of the parallel propagator
vanish due to the (anti-)symmetry of the Riemann tensor.

2.2.3 Covariant expansions of the world function and the
parallel propagator

We now apply the results of section 2.2 to σαβ , σᾱβ and σᾱβ̄. Using the results in
Eqs. (2.17), (2.18), (2.19), (2.21), and (2.23) from section 2.2.1 we find

(2.29a)σαβ = gᾱαg
β̄
β

(

gᾱβ̄ −
1

3
Rᾱγ̄β̄δ̄σ

γ̄σδ̄ +
1

4
Rᾱγ̄β̄δ̄;ε̄σ

γ̄σδ̄σε̄ +O(ε4)
)

,

(2.29b)σαβ̄ = gᾱα

(

−gᾱβ̄ −
1

6
Rᾱγ̄β̄δ̄σ

γ̄σδ̄ − 1

12
Rᾱγ̄β̄δ̄;ε̄σ

γ̄σδ̄σε̄ +O(ε4)
)

,

(2.29c)σᾱβ̄ = gᾱβ̄ −
1

3
Rᾱγ̄β̄δ̄σ

γ̄σδ̄ +
1

12
Rᾱγ̄β̄δ̄;ε̄σ

γ̄σδ̄σε̄ +O(ε4) .

Similarly the results in Eqs.(2.24) allow us to find a covariant expansion for gᾱβ;γ, the
derivative of the parallel propagator

(2.30)gᾱβ;γ = gβ̄βg
γ̄
γ

(

−1

2
Rᾱ

β̄γ̄δ̄σ
δ̄ +

1

3
Rᾱ

β̄γ̄δ̄;ε̄σ
δ̄σε̄ +O(ε3)

)

.

2.3 Coordinate expansions of world function and

the parallel propagator

The results of section 2.2 allow us to express any bi-tensor as a covariant expansion
away from the base point x̄. This expansion however involves σᾱ and gᾱα which cannot
be further expanded in a covariant manner. In this section we find expressions for
these in terms of the coordinate distance wα ≡ (x− x̄)α.
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2.3.1 Coordinate expansion of the world function

We start by recalling Eq. (2.6b) which tells us that σᾱ is proportional to the tangent
vector along the geodesic joining x and x̄. Choosing a parametrization λ such that
λ0 = 0 at x̄ and λ1 = 1 at x we find that

(2.31)σᾱ
∗
= −tᾱ ,

where “
∗
=” indicates that the equation only holds for a particular parametrization.

Next, consider a Taylor expansion of zµ(λ) along the geodesic around x̄. Such an
expansion is clearly not covariant, but can be obtained for any given coordinate
system, just as the Christoffel symbols are not covariant but can be calculated for
any given coordinate system. We have

(2.32)zµ(λ) = zµ(0) + żµ(0)λ+
1

2
z̈µ(0)λ2 +

1

6

...
z µ(0)λ3 +

1

24
z(4)µ(0)λ4 +O(λ5) .

In this we can eliminate higher derivatives of żµ in favour of żµ with the help of the
geodesic equation

(2.33)z̈µ + Γµνλż
ν żλ = 0 ,

where the Christoffel symbols and the four velocity are evaluated at x̄. Taking a
further derivative of Eq. (2.33) with respect to λ we find

(2.34)0 =
...
z µ + 2Γµνλż

ν z̈λ + Γµνλ,κż
ν żλżκ =

...
z µ −

(

2ΓµνλΓ
ν
κι

)

żλżκżι .

We introduce coefficients Aµνλ, A
µ
νλκ, and Aµνλκι as

(2.35a)Aµνλ = Γµνλ ,

(2.35b)Aµνλκ =
(

Γµνλ,κ − 2ΓµινΓ
ι
λκ

)

,

and

(2.35c)
Aµνλκι =

(

Γµνλ,κι − 4Γµρν,λΓ
ρ
κι − 2ΓµρνΓ

ρ
λκ,ι − Γµνλ,ρΓ

ρ
κι

+ 2ΓµρσΓ
ρ
νλΓ

σ
κι + 4ΓµρνΓ

ρ
σλΓ

σ
κι

)

,

in terms of which the Taylor expansion reads

(2.36)
zµ(λ) = zµ(0) + żµ(0)λ− 1

2
Aµνλż

ν(0)żλ(0)λ2 − 1

6
Aµνλκż

ν(0)żλ(0)żκ(0)λ3

− 1

24
Aµνλκιż

ν(0)żλ(0)żκ(0)żι(0)λ4 +O(λ5) .

Letting λ→ 1 we find for the coordinate difference

(2.37)wα
∗
= żᾱ − 1

2
Aᾱβ̄γ̄ ż

β̄ żγ̄ − 1

6
Aᾱβ̄γ̄δ̄ż

β̄ żγ̄ żδ̄ − 1

24
Aᾱβ̄γ̄δ̄ε̄ż

β̄ żγ̄ żδ̄żε̄ +O(λ5) ,

14
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where all objects on the right hand side are evaluated at x̄. Next we invert this
relation in order to find żᾱ as a function of wα. We make an ansatz

(2.38)żᾱ
∗
= wα +

1

2
Bα

βγw
βwγ +

1

6
Bα

βγδw
βwγwδ +

1

24
Bα

βγδεw
βwγwδwε +O(λ5) ,

where the Bα
βγ’s are evaluated at x̄. After substituting Eq. (2.38) into Eq. (2.37),

sorting out the powers of żᾱ and equating coefficients on both sides, we find

(2.39a)Bα
βγ = Γαβγ ,

(2.39b)Bα
βγδ = Γαβγ,δ + ΓαµβΓ

µ
γδ ,

and
(2.39c)Bα

βγδε = Γαβγ,δε + 2ΓαµβΓ
µ
γδ,ε + ΓαµνΓ

µ
βγΓ

ν
δε + Γαβγ,µΓ

µ
δε .

2.3.2 Coordinate expansion of the parallel propagator

A very similar approach to the one described in section 2.3.1 is successful in obtaining
a coordinate expansion of the parallel propagator. We begin by forming a Taylor
expansion of dual vector ωµ parallel transported around x̄

(2.40)ωµ(λ)
∗
= ωᾱ + ω̇ᾱλ+

1

2
ω̈ᾱλ

2 +
1

6

...
ω ᾱλ

3 +O(λ4) .

Again we use the geodesic equation to get a handle on the first derivative of ωµ

(2.41)ω̇ᾱ − Γγ̄ᾱβ̄ ż
βωγ̄ = 0 ,

and derivatives with respect to λ thereof to get access to the higher derivatives. We
find

(2.42a)ω̇ᾱ = Γγ̄ᾱβ̄ ż
β̄ωγ̄ ,

(2.42b)ω̈ᾱβ̄ =
(

Γγ̄ᾱβ̄,δ̄ − Γγ̄ᾱε̄Γ
ε̄
β̄δ̄ + Γγ̄β̄ε̄Γ

ε̄
ᾱδ̄

)

żβ̄ żδ̄ωγ̄ ,

and

(2.42c)

...
ω ᾱβ̄ =

(

Γγ̄ᾱβ̄,δ̄ε̄ − 2Γγ̄ᾱµ̄,β̄Γ
µ̄
δ̄ε̄ − Γγ̄ᾱβ̄,µ̄Γ

µ̄
δ̄ε̄ + 2Γγ̄β̄µ̄Γ

µ̄
ᾱδ̄,ε̄ − 2Γγ̄µ̄β̄Γ

µ̄
ᾱν̄Γ

ν̄
δ̄ε̄

− Γγ̄ᾱµ̄Γ
µ̄
β̄δ̄,ε̄ + 2Γγ̄ᾱµ̄Γ

µ̄
ν̄β̄Γ

ν̄
δ̄ε̄ + Γγ̄µ̄β̄,δ̄Γ

µ̄
ᾱε̄ − Γγ̄µ̄ν̄Γ

ν̄
β̄ε̄Γ

µ̄
ᾱδ̄

+ Γγ̄µ̄β̄Γ
µ̄
ν̄δ̄Γ

ν̄
ᾱε̄

)

żβ̄ żδ̄żǭωγ̄ .

Substituting Eq.(2.38) for żᾱ and sorting out the powers of wα we find

(2.43a)gᾱβ = δᾱβ +Qᾱ
βγw

γ +
1

2
Qᾱ

βγδw
γwδ +

1

6
Qᾱ

βγδεw
γwδwε +O(ε4) ,

where

(2.43b)Qᾱ
βγ = Γᾱβγ ,

(2.43c)Qᾱ
βγδ = Γᾱβγ,δ + ΓᾱγµΓ

µ
βδ ,

(2.43d)Qᾱ
βγδε = Γᾱβγ,δε −

1

2
Γᾱβµ,γΓ

µ
δε +

1

2
Γᾱβγ,µΓ

µ
δε + Γᾱµγ,δΓ

µ̄
βε + ΓᾱµγΓ

µ
νδΓ

ν
βε .

All Christoffel symbols in the expressions above are evaluated at the base point x̄.
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2.4 Singular Green function

We refer the reader to section 12 of [33] for an introduction to the theory of distri-
butions in curved spacetime. We will for the most part simply quote the required
results without reproducing all the details.

2.4.1 Scalar field

The scalar field obeys the wave equation

(2.44)gαβ∇α∇βΦ(x) = −4πρ(x) ,

where ρ(x) is a prescribed source. Any Green function of the wave operator satisfies

(2.45)gαβ∇α∇βG(x, x̄) = −4πδ4(x, x̄) ,

where δ4(x, x̄) ≡ δ(x − x̄)/
√−g is a scalarized four dimensional Dirac distribution.

Clearly

(2.46)Φ(x) =

∫

G(x, x̄)ρ(x̄) d4x̄

is a solution to Eq. (2.44). Different types of Green functions such as retarded or
advanced Green functions differ in the boundary conditions that they satisfy, which
corresponds to the addition of a homogeneous solution of the wave equation Eq. (2.45).
The Green function of physical significance is the retarded one, which has support only
on and within the backwards light cone of x. It encodes the correct causal behaviour
of the field. For our purposes we will further decompose the retarded Green function
into singular and regular pieces according to the singular-regular decomposition of
Detweiler and Whiting [3].

In this approach we work in the normal neighbourhood N (x) around the field
point, such that there are unique geodesics linking any two points in the neighbour-
hood. In the neighbourhood we make the Hadamard ansatz

(2.47)G±(x, x̄) = U(x, x̄)δ±(σ) + V (x, x̄)θ±(−σ) ,

for the retarded [G+(x, x̄)] and advanced [G−(x, x̄)] Green functions. Here U(x, x̄) and
V (x, x̄) are smooth bi-scalars. δ±(σ) and θ±(−σ) are curved spacetime generalizations
of Dirac’s δ-distribution and Heaviside’s step function having support only on the
past (upper sign) or future (lower sign) of x, respectively. See [33] for details on
their definition. For our purposes it is enough to note that substituting this ansatz
into Eq. (2.45) yields differential equations and coincidence conditions on U(x, x̄) and
V (x, x̄) that define them uniquely. In particular we find that

(2.48)U(x, x̄) = ∆1/2(x, x̄) ,

where ∆(x, x̄) is the van-Vleck determinant

(2.49)∆(x, x̄) ≡ det(−gᾱα(x, x̄)σαβ̄(x, x̄)) .

16



CHAPTER 2. THEORETICAL FRAMEWORK

We also have

[V ] =
1

12
R(x̄) ,

(2.50a)

V,ασ
α +

1

2
(σαα − 1)V =

1

2
gµν∇µ∇νU , on the light cone ,

(2.50b)

and
gµν∇µ∇νV = 0 ,

(2.50c)

which determine V (x, x̄) anywhere in the normal neighbourhood. The singular Green
function GS is defined as

(2.51)GS(x, x̄) =
1

2

[

G+(x, x̄) +G−(x, x̄) −H(x, x̄)
]

,

where H(x, x̄) is a bi-scalar satisfying the properties H1 – H4 of [33]

(H1)gµν∇µ∇νH(x, x̄) = 0 ,

(H2)H(x, x̄) = H(x̄, x) ,
(H3)H(x, x̄) = G+(x, x̄), if x is in the chronological future of x̄ ,

and
(H4)H(x, x̄) = G−(x, x̄), if x is in the chronological past of x̄ .

With these definitions the singular Green function in the normal neighbourhood is
given by

(2.52)GS(x, x̄) =
1

2
U(x, x̄)δ(σ) − 1

2
V (x, x̄)θ(σ) .

2.4.2 Electromagnetic field

The procedure to find the singular Green function for the electromagnetic field closely
follows the pattern described in section 2.4.1.

The electromagnetic vector potential Aα obeys the wave equation [34]

(2.53)gµν∇µ∇νA
α − Rα

βA
β = −4πjα ,

where the Lorenz gauge condition

(2.54)gµν∇µAν = 0

has been imposed and Rα
β is the Ricci tensor of the background and jα is a prescribed

source. The Green function associated with the wave equation satisfies

(2.55)gµν∇µ∇νG
α
β̄(x, x̄) −Rα

βG
β
β̄(x, x̄) = −4πgαβ̄(x, x̄)δ

4(x, x̄) .

Following the pattern outlined in section 2.4.1 we make an ansatz

(2.56)Gα
±β̄(x, x̄) = Uα

β̄(x, x̄)δ±(σ) + V α
β̄(x, x̄)θ±(−σ)
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valid in the normal neighbourhood N (x). This, after substitution into Eq. (2.55),
yields expressions for Uα

β̄
(x, x̄) and V α

β̄
(x, x̄).

(2.57a)Uα
β̄(x, x̄) = gαβ̄(x, x̄)∆

1/2(x, x̄) ,

(2.57b)
[

V α
β̄

]

= −1

2

(

Rᾱ
β̄ −

1

6
δᾱβ̄R̄

)

,

(2.57c)V α
β̄;γσ

γ +
1

2
(σγγ − 2)V α

β̄ =
1

2
(gµν∇µ∇νU

α
β̄ − Rα

βU
β
β̄),

on the light cone ,

and
(2.57d)gµν∇µ∇νV

α
β̄ − Rα

βV
β
β̄ = 0 ,

which determine Uα
β̄
, and V α

β̄
uniquely within the normal neighbourhood. The

singular Green function is defined analogously to the scalar case as

(2.58)Gα
Sβ̄(x, x̄) =

1

2

[

Gα
+β̄(x, x̄) +Gα

−β̄(x, x̄) −Hα
β̄(x, x̄)

]

,

where Hα
β̄

satisfies conditions H1 – H4 analogous to the scalar case. We find

(2.59)Gα
Sβ̄(x, x̄) =

1

2
Uα

β̄(x, x̄)δ(σ) − 1

2
V α

β̄(x, x̄)θ(σ) .

2.4.3 Gravitational field

The procedure to find the singular Green function for the gravitational perturbation
closely follows the pattern described in section 2.4.1.

A small mass m perturbs the background spacetime such that the metric ĝαβ
describing the combined system is given by

(2.60)ĝαβ = gαβ + hαβ ,

where the perturbation hαβ is “small” compared gαβ. For convenience of notation it
is useful to introduce the trace reversed perturbation

(2.61)γαβ = hαβ −
1

2
gµνhµνgαβ .

Imposing the Lorenz gauge condition

(2.62)gµν∇µγνα = 0 ,

the trace reversed perturbation satisfies the wave equation [34]

(2.63)gµν∇µ∇νγ
αβ + 2Rα β

γ δγ
γδ = −16πT α

β

,

where T αβ is a prescribed source. The Green function associated to the wave operator
satisfies

(2.64)gµν∇µ∇νG
αβ
γ̄δ̄(x, x̄) + 2Rα β

γ δG
γδ
γ̄δ̄(x, x̄) = −16πg(α

γ̄(x, x̄)g
β)
δ̄(x, x̄)δ

4(x, x̄) .
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Following the pattern outlined in section 2.4.1 we make an ansatz

(2.65)Gαβ
± γ̄δ̄(x, x̄) = Uαβ

γ̄δ̄(x, x̄)δ±(σ) + V αβ
γ̄δ̄(x, x̄)θ±(−σ)

valid in the normal neighbourhood N (x), which, after substitution into Eq. (2.64)
yields expressions for Uαβ

γ̄δ̄
(x, x̄) and V αβ

γ̄δ̄
(x, x̄).

(2.66a)Uαβ
γ̄δ̄(x, x̄) = g(α

γ̄(x, x̄)g
β)
δ̄(x, x̄)∆

1/2(x, x̄) ,

(2.66b)
[

V αβ
γ̄δ̄

]

=
1

2

(

Rᾱ β̄
γ̄ δ̄ +Rβ̄ ᾱ

γ̄ δ̄

)

,

(2.66c)V αβ
γ̄δ̄;εσ

ε +
1

2
(σεε − 2)V αβ

γ̄δ̄ =
1

2
(gµν∇µ∇νU

αβ
γ̄δ̄ + 2Rα β

γ δU
γδ
γ̄δ̄),

on the light cone ,

and
(2.66d)gµν∇µ∇νV

αβ
γ̄δ̄ + 2Rα β

γ δV
γδ
γ̄δ̄ = 0 ,

which determine Uαβ
γ̄δ̄

, and V αβ
γ̄δ̄

uniquely within the normal neighbourhood. The
singular Green function is defined analogously to the scalar case as

(2.67)Gαβ
S γ̄δ̄(x, x̄) =

1

2

[

Gαβ
+ γ̄δ̄(x, x̄) +Gαβ

− γ̄δ̄(x, x̄) −Hαβ
γ̄δ̄(x, x̄)

]

,

where Hαβ
γ̄δ̄

satisfies conditions H1 – H4 analog to the scalar case. We find

(2.68)Gαβ
S γ̄δ̄(x, x̄) =

1

2
Uαβ

γ̄δ̄(x, x̄)δ(σ) − 1

2
V αβ

γ̄δ̄(x, x̄)θ(σ) .

2.5 Singular field

The motion of the particle determines the source terms

(2.69a)ρ(x) = q

∫

γ

δ4(x, z) dτ ,

(2.69b)jα(x) = e

∫

γ

gαµ(x, z)ż
µδ4(x, z) dτ ,

and

(2.69c)T αβ(x) = m

∫

γ

gαµ(x, z)g
β
ν(x, z)ż

µżνδ4(x, z) dτ

that appear in the wave equation for scalar, electromagnetic or gravitational pertur-
bations. Having specified the motion, we use Eq. (2.52), Eq. (2.59), and Eq. (2.68)
to calculate the singular part of the scalar, electromagnetic and gravitational fields,
which are given by

(2.70a)ΦS(x) =
q

2r
U(x, x′) +

q

2radv
U(x, x′′) − 1

2
q

∫ v

u

V (x, z) dτ ,

(2.70b)A α
S (x) =

e

2r
Uα

β′(x, x′)uβ
′

+
e

2radv
Uα

β′′(x, x′′)uβ
′′ − 1

2
e

∫ v

u

V α
µ(x, z)u

µ dτ ,
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and

(2.70c)
γ αβ

S (x) =
2m

r
Uαβ

γ′δ′(x, x
′)uγ

′

uδ
′

+
2m

radv

Uαβ
γ′′δ′′(x, x

′′)uγ
′′

uδ
′′

− 2m

∫ v

u

V αβ
µν(x, z)u

µuν dτ .

In Eq. (2.70) q, e and m are the charges and mass of the perturbing object, u and v
are the retarded and advanced times defined by

(2.71)σ(x, z(u)) = σ(x, z(v)) = 0 , u < v ,

uµ is the four velocity along the world line and

(2.72)r ≡ σα′(x, z(u))uα
′

, radv ≡ −σα′(x, z(v))uα
′′

are affine parameter distances on the retarded and advanced light cones of x.
Finally we take one further derivative with respect to x of Eq. (2.70) to find the

gradient of the singular field. Here we have to take into account that x and x′ or x′′

are linked via a null geodesic, so that a variation in x will imply a variation in x′ or
x′′, too. We find

(2.73a)

ΦS
α(x) = − q

2r2
U(x, x′)∂αr −

q

2r2
adv

U(x, x′′)∂αradv +
q

2r
U;α(x, x

′)

+
q

2r
U;α′(x, x′)uα

′

∂αu+
q

2r
U;α(x, x

′′) +
q

2r
U;α′′(x, x′′)uα

′′

∂αv

+
1

2
qV (x, x′)∂αu−

1

2
qV (x, x′′)∂αv −

1

2
q

∫ v

u

∇αV (x, z(τ)) dτ ,

(2.73b)

AS
α;β(x) = − q

2r2
Uαβ′uβ

′

∂βr −
q

2r2
adv

Uαβ′′uβ
′′

∂βradv

+
q

2r
Uαβ′;βu

β′

+
q

2r
Uαβ′;γ′u

β′

uγ
′

∂βu+
q

2radv
Uαβ′′;βu

β′′

+
q

2radv
Uαβ′′;γ′′u

β′′

uγ
′′

∂βv +
1

2
qVαβ′uβ

′

∂βu

− 1

2
qVαβ′′uβ

′′

∂βv −
1

2
q

∫ v

u

∇βVαµ(x, z(τ))u
β(τ) dτ ,

and

(2.73c)

γS
αβ;γ(x) = −2m

r2
Uαβα′β′uα

′

uβ
′

∂γr −
2m

r2
adv

Uαβα′′β′′uα
′′

uβ
′′

∂γradv

+
2m

r
Uαβα′β′;γu

α′

uβ
′

+
2m

r
Uαβα′β′;γ′u

α′

uβ
′

uγ
′

∂γu

+
2m

radv

Uαβα′β′;γu
α′

uβ
′

+
2m

radv

Uαβα′′β′′;γ′′u
α′′

uβ
′′

uγ
′′

∂γv

− 2m

∫ v

u

∇γVαβµν(x, z(τ))u
µuν dτ .

These expressions form the basis for a calculation of the regularization parameters.
They can be found in Eqs. (413), (464) and (527) of [33].
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2.6 Taylor expansions and world line point

Our goal is the calculation of the singularity structure of the field gradients in
Eq. (2.73) near an arbitrary point x̄ = z(τ̄ ) on the world line of the particle. We
therefore need to expand the field gradients in a Taylor expansion around x̄. Unfor-
tunately the field gradients depend on the field point x not only through its explicit
dependence on it, but also through a hidden dependence due to the null geodesic that
links x and x′ or x′′. Changing x will also vary x′ and x′′, introducing complicated
dependencies which are hard to deal with. To disentangle the dependence of the field
gradients on x, we expand the potentials U , V as well as r and radv around the world
line point x̄. This consolidates the dependence of bi-tensor on the world line to a
single point x̄, with the dependence on x′, x′′ being absorbed into displacements on
the world line.

2.6.1 Taylor expansion along the world line

Consider a function p(τ) which is a scalar on the world line. We expand it around a
time τ̄ as

(2.74)p(τ) = p(τ̄) + ṗ(τ̄)∆ +
1

2
p̈(τ̄)∆2 +

1

6

...
p (τ̄ )∆3 +

1

24
p(4)(τ̄ )∆4 +O(∆5) ,

where ∆ = τ − τ̄ and an overdot denotes a covariant derivative with respect to τ ,
ṗ(τ) ≡ Dp(τ)

dτ
≡ p;ᾱu

ᾱ. Evaluating Eq. (2.74) at ∆+ = v− τ̄ and ∆− = u− τ̄ yields an
approximation for p at the advanced and retarded points which is accurate to O(∆5).

2.6.2 Calculation of ∆+ and ∆−

We use the special case where p is Synge’s world function evaluated at a point on the
world line and at the field point, p(τ) = σ(x, z(τ)), to find approximation for ∆± in
terms of σᾱ. Evaluating p(τ) at the advanced or retarded points τ = u, v we have

(2.75)
0 = σ(x, x̄) + σᾱ(x, x̄)u

ᾱ∆ +
1

2
σᾱβ̄(x, x̄)u

ᾱuβ̄∆2 +
1

6
σᾱβ̄γ̄(x, x̄)u

ᾱuβ̄uγ̄∆3

+
1

24
σᾱβ̄γ̄δ̄(x, x̄)u

ᾱuβ̄uγ̄uδ̄∆4 +
1

120
σᾱβ̄γ̄δ̄ε̄(x, x̄)u

ᾱuβ̄uγ̄uδ̄uε̄∆5 +O(∆6) ,

where ∆ is either ∆+ or ∆−. We use Eqs. (2.7) and (2.29) to obtain expansion of
Synge’s world function and its higher derivatives in terms of σᾱ. After some algebra
we find

(2.76a)σ =
1

2
gᾱβ̄σ

ᾱσβ̄ ,

(2.76b)σᾱu
ᾱ ≡ r̄ ,

(2.76c)σᾱβ̄u
ᾱuβ̄ = −1 − 1

3
Ruσuσ +

1

12
Ruσuσ|σ +O(ε4) ,

(2.76d)σᾱβ̄γ̄(x, x̄)u
ᾱuβ̄uγ̄ = −1

4
Ruσuσ|u +O(ε3) ,

(2.76e)σᾱβ̄γ̄δ̄(x, x̄)u
ᾱuβ̄uγ̄uδ̄ = 0 +O(ε2) ,
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and
(2.76f)σᾱβ̄γ̄δ̄ε̄(x, x̄)u

ᾱuβ̄uγ̄uδ̄uε̄ = 0 +O(ε) ,

where we have introduced the short-hand notation r̄ = σᾱu
ᾱ, Ruσuσ ≡ Rᾱβ̄γ̄δ̄u

ᾱσβ̄uγ̄σδ̄

and Ruσuσ|u ≡ Rᾱβ̄γ̄δ̄;ε̄u
ᾱσβ̄uγ̄σδ̄uε̄. The notation is unambiguous and can be extended

to any number of derivatives in the obvious way. Many variants of this notation will
appear in the following.

In order to invert Eq. (2.75) for ∆ we make the ansatz

(2.77)∆ = ∆1 +
1

2
∆2 +

1

6
∆3 +

1

24
∆4 +O(ε5) ,

where ∆n = O(εn) and ε is the bookkeeping variable used to keep track of powers of
σα. Substituting Eq. (2.77) into Eq. (2.75), collecting the coefficients on front of each
power of ε, and demanding that the equation holds order by order, we find

(2.78a)∆1 = r̄ ± s ,
(2.78b)∆2 = 0 ,

(2.78c)∆3 = ∓Ruσuσ
(r̄ ± s)2

s
,

and

(2.78d)∆4 = ∓(r̄ ± s)2

s
[Ruσuσ|u(r̄ ± s) − Ruσuσ|σ] ,

where we have introduced yet another short hand for the spatial separation s ≡
√

(uᾱuβ̄ + gᾱβ̄)σ
ᾱσβ̄. Inspection shows that the upper sign in Eq. (2.78) is valid for

∆ = ∆+ and the lower sign is valid for ∆ = ∆−. We find

(2.79a)∆− = (r̄ − s) +
(r̄ − s)2

6s
Ruσuσ +

(r̄ − s)2

24s
[Ruσuσ|u(r̄− s) −Ruσuσ|σ] +O(ε5) ,

and

(2.79b)∆+ = (r̄ + s) − (r̄ + s)2

6s
Ruσuσ −

(r̄ + s)2

24s
[Ruσuσ|u(r̄ + s) −Ruσuσ|σ] +O(ε5) .

2.6.3 Taylor expansions of r and radv

We obtain expansions for r and radv by setting p(τ) = σµ(x, z(τ))u
µ and expanding

around τ̄ as described in section 2.6.1 up to order O(∆5). With this definition for
p(τ) we have r = p(u) and radv = −p(v) and since σµ(x, z(τ))u

µ = σ̇(x, z(τ)) the
coefficients in a Taylor expansion for r and radv are (up to a sign) the ones listed in
Eq. (2.76). Substituting the coefficients and the expressions for ∆± we find

(2.80a)r= s− r̄2 − s2

6s
Ruσuσ−

r̄ − s

24s

[

(r̄−s)(r̄+2s)Ruσuσ|u−(r̄+s)Ruσuσ|σ

]

+O(ε5) ,

and

(2.80b)
radv = s− r̄2 − s2

6s
Ruσuσ

− r̄ + s

24s

[

(r̄ + s)(r̄ − 2s)Ruσuσ|u − (r̄ − s)Ruσuσ|σ

]

+O(ε5) .
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2.6.4 Taylor expansions of ∂αu and ∂αv

At first glance the procedure outlined in section 2.6.1 is not applicable to the terms
involving gradients, since they are tensors and cannot therefore be expanded in a
Taylor series. However closer inspection reveals that the terms involving gradients
are tensors at the field point x only, but are scalars on the world line. The world
line indices are saturated by contractions with the four velocity. We therefore define
a world line scalar pα = ∂αu and proceed as in section 2.6.1. [33] gives expressions
for ∂αu and ∂αv in term of Synge’s world function in his Eq. (145) and the material
leading to Eq. (231). We use

(2.81a)∂αu = −σα
r

,

(2.81b)∂αv = +
σα
radv

.

We therefore require expansions of σα on the world line. We define a world line scalar
σα(τ) = σα(x, z(τ)) and expand it as

(2.82)
σα(τ) = σα(x, x̄) + σαβ̄(x, x̄)u

β̄∆ +
1

2
σαβ̄γ̄(x, x̄)u

β̄uγ̄∆2

+
1

6
σαβ̄γ̄δ̄(x, x̄)u

β̄uγ̄uδ̄∆3 +O(∆4) ,

where ∆ is either ∆+ or ∆−. We use Eq. (2.29) to obtain expansion of the higher
derivatives of Synge’s world function in terms of σᾱ. After some algebra we find

(2.83a)σαβ̄u
β̄ = −gᾱα

(

uᾱ +
1

6
Rᾱσuσ

)

+O(ε3) ,

(2.83b)σαβ̄γ̄u
β̄uγ̄ =

2

3
gᾱαRᾱuσu +O(ε2) ,

(2.83c)σαβ̄γ̄δ̄(x, x̄)u
β̄uγ̄uδ̄ = 0 +O(ε) .

Evaluating Eq. (2.82) at ∆− or ∆+ yields σα at the retarded and advanced points,
respectively:

(2.84)

σα(x, x
′) = gᾱα

{

−
[

σᾱ + (r̄ − s)uᾱ

]

−
[
1

6
(r̄ − s)Rᾱσuσ +

(r̄ − s)2

6s
Ruσuσuᾱ −

1

3
(r̄ − s)2Rᾱuσu

]

+

[
1

12
(r̄ − s)Rᾱσuσ|σ −

(r̄ − s)2

24s

(

(r̄ − s)Ruσuσ|u −Ruσuσ|σ

)

uᾱ

− 1

24
(r̄−s)2

(

3Rᾱuσu|σ+Rᾱσuσ|u

)

+
1

12
(r̄−s)3Rᾱuσu|u

]

+O(ε5)

}

,
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and

(2.85)

σα(x, x
′′) = gᾱα

{

−
[

σᾱ + (r̄ + s)uᾱ

]

−
[
1

6
(r̄ + s)Rᾱσuσ −

(r̄ + s)2

6s
Ruσuσuᾱ −

1

3
(r̄ + s)2Rᾱuσu

]

+

[
1

12
(r̄ + s)Rᾱσuσ|σ +

(r̄ + s)2

24s

(

(r̄ + s)Ruσuσ|u −Ruσuσ|σ

)

uᾱ

− 1

24
(r̄+s)2

(

3Rᾱuσu|σ+Rᾱσuσ|u

)

+
1

12
(r̄+s)3Rᾱuσu|u

]

+O(ε5)

}

.

2.6.5 Taylor expansions of ∂αr and ∂αradv

Expressions for ∂αr and ∂αradv are displayed in Eqs. (147) and (232) of [33]:

(2.86)∂αr = −σα′β′uα
′

uβ
′ σα
r

+ σαα′uα
′

,

(2.87)∂αradv = −σα′′β′′uα
′′

uβ
′′ σα
radv

− σαα′′uα
′′

.

We note that σα′β′uα
′

uβ
′

= σ̈ and σαβ′uβ
′

= σ̇α so that the coefficients of Eq. (2.29)
can be used in an expansion of σα′β′uα

′

uβ
′

as

(2.88)σ̈(τ) = σ̈ +
...
σ∆ +

1

2
σ(4)∆2 +O(ε3) ,

and those of Eq. (2.82) can be used in an expansion of σαβ′uβ
′

as

(2.89)σ̇α = σ̇α + σ̈α∆ +
1

2

...
σ α∆

2 +O(ε3) .

For the advanced point x′′ similar considerations apply. We find

(2.90a)

σαα′uα
′

= gᾱα

{

−uᾱ −
[
1

6
Rᾱσuσ −

2

3
(r̄ − s)Rᾱuσu

]

+

[
1

12
Rᾱσuσ|σ

− 1

12
(r̄ − s)

(

3Rᾱuσu|σ +Rᾱσuσ|u

)

+
1

4
(r̄ − s)2Rᾱuσu|u

]

+O(ε4)

}

,

(2.90b)

σαα′′uα
′′

= gᾱα

{

−uᾱ −
[
1

6
Rᾱσuσ −

2

3
(r̄ + s)Rᾱuσu

]

+

[
1

12
Rᾱσuσ|σ

− 1

12
(r̄ + s)

(

3Rᾱuσu|σ +Rᾱσuσ|u

)

+
1

4
(r̄ + s)2Rᾱuσu|u

]

+O(ε4)

}

,
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and

(2.90a)σα′β′uα
′

uβ
′

= −1 − 1

3
Ruσuσ +

1

12

[

Ruσuσ|σ − 3(r̄ − s)Ruσuσ|u

]

+O(ε4) ,

(2.90b)σα′′β′′uα
′′

uβ
′′

= −1 − 1

3
Ruσuσ +

1

12

[

Ruσuσ|σ − 3(r̄ + s)Ruσuσ|u

]

+O(ε4) .

Substituting all of these results into Eqs. (2.86) and (2.86) we find

(2.92)

∂αr = −1

s
gᾱα

{[

σᾱ+ r̄uᾱ

]

+

[
1

6
r̄Rᾱσuσ−

1

3
(r̄2−s2)Rᾱuσu+

r̄2 + s2

6s2
Ruσuσσᾱ

+
r̄(r̄2 − s2)

6s2
Ruσuσuᾱ

]

+

[

− 1

12
r̄Rᾱσuσ|σ +

1

8
(r̄2 − s2)Rᾱuσu|σ

+
1

24
(r̄2 − s2)Rᾱσuσ|u −

1

12
(r̄ − s)2(r̄ + 2s)Rᾱuσu|u

+
1

24s2

(

(r̄ − s)(r̄2 + r̄s+ 4s2)Ruσuσ|u − (r̄2 + s2)Ruσuσ|σ

)

σᾱ

+
r̄ − s

24s2

(

(r̄ − s)(r̄2 + 2r̄s + 3s2)Ruσuσ|u − r̄(r̄ + s)Ruσuσ|σ

)

uᾱ

]

+O(ǫ5)

}

and

(2.93)

∂αradv = −1

s
gᾱα

{[

σᾱ+ r̄uᾱ

]

+

[
1

6
r̄Rᾱσuσ−

1

3
(r̄2−s2)Rᾱuσu+

r̄2 + s2

6s2
Ruσuσσᾱ

+
r̄(r̄2 − s2)

6s2
Ruσuσuᾱ

]

+

[

− 1

12
r̄Rᾱσuσ|σ +

1

8
(r̄2 − s2)Rᾱuσu|σ

+
1

24
(r̄2 − s2)Rᾱσuσ|u −

1

12
(r̄ + s)2(r̄ − 2s)Rᾱuσu|u

+
1

24s2

(

(r̄ + s)(r̄2 − r̄s+ 4s2)Ruσuσ|u − (r̄2 + s2)Ruσuσ|σ

)

σᾱ

+
r̄ + s

24s2

(

(r̄ + s)(r̄2 − 2r̄s+ 3s2)Ruσuσ|u − r̄(r̄ − s)Ruσuσ|σ

)

uᾱ

]

+O(ǫ5)

}

.

2.6.6 Taylor expansions of the potentials

Taylor expansions of the direct potentials

In section 2.4 we displayed the direct part of the scalar, electromagnetic and gravita-
tional singular Green function, which is given by

U(x, x̄) = ∆1/2(x, x̄) ,

Uα
β̄(x, x̄) = gαβ̄(x, x̄)∆

1/2(x, x̄) ,
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and
Uαβ

γ̄δ̄(x, x̄) = g(α
γ̄(x, x̄)g

β)
δ̄(x, x̄)∆

1/2(x, x̄) ,

respectively. In order to obtain an expansion for the direct potential we first need an
expansion of the van-Vleck determinant ∆(x, x̄). Fortunately this turns out to be a
simple expression in vacuum spacetimes. First consider the expansion of σαβ̄ derived
in Eq. (2.29). We introduce the auxiliary matrix

(2.94)∆ᾱ
β̄ = −gᾱασαβ̄ = δᾱβ̄ +

1

6
Rᾱ

γ̄β̄δ̄σ
γ̄σδ̄ − 1

12
Rᾱ

γ̄β̄δ̄;ε̄σ
γ̄σδ̄σε̄ +O(ε4) ,

in terms of which the van-Vleck determinant is given by ∆(x, x̄) = det(∆ᾱ
β̄
). Since

this matrix is close to the identity matrix, we expand its determinant as

(2.95)det(∆ᾱ
β̄) = 1 + tr(∆ᾱ

β̄ − δᾱβ̄) +O(∆ᾱ
β̄ − δᾱβ̄)

2 .

In vacuum spacetimes the Ricci tensor vanishes and therefore

∆(x, x̄) = 1 +O(ε4), in vacuum spacetimes .
(2.96)

This statement still holds for the square root ∆1/2 of ∆ implying that

(2.97a)U(x, x̄) = 1 +O(ε4) ,

(2.97b)Uα
β̄(x, x̄) = gαβ̄(x, x̄) +O(ε4) ,

and
(2.97c)Uαβ

γ̄δ̄(x, x̄) = g(α
γ̄(x, x̄)g

β)
δ̄(x, x̄) +O(ε4) .

Scalar case Clearly the Taylor expansion for the direct potential for the scalar case
is trivial since U is constant to the order required in the calculation

(2.98)U(τ) = 1 +O(ε4) .

Electromagnetic case We define world line scalars via Uα(τ) ≡ Uµ
α(x, z(τ))uµ,

Uαβ(τ) ≡ Uαµ;β(x, z(τ))u
µ for Uµ

α and its derivative. Note that Uαµν(x, z(τ))u
µuν =

U̇α and therefore does not require separate treatment. Thus

(2.99a)Uα(τ) = Uα + U̇α∆ +
1

2
Üα∆

2 +
1

6

...
Uα∆

3 +O(∆4) ,

and

(2.99b)Uαβ(τ) = Uαβ + U̇αβ∆ +
1

2
Üαβ∆

2 +O(∆3) ,

where all coefficients are to be evaluated on the world line. Repeated use of Eq. (2.30)
to handle the derivatives of the parallel propagator hidden in U̇α and Uαβ yields
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expressions for the coefficients

(2.100a)Uα = gᾱαu
ᾱ +O(ε4) ,

(2.100b)U̇α = gᾱα

(1

2
Rᾱuuσ −

1

6
Rᾱuuσ|σ

)

+O(ε3) ,

(2.100c)Üα = −1

3
gᾱαRᾱuσu|u +O(ε2) ,

(2.100d)
...
Uα = 0 +O(ε) ,

and

(2.101a)Uαβ = gᾱαg
β̄
β

(1

2
Rᾱuβ̄σ −

1

3
Rᾱuβ̄σ|σ

)

+O(ε3) ,

(2.101b)U̇αβ = gᾱαg
β̄
β

(1

2
Rᾱuβ̄u +

1

6
Rᾱuβ̄σ|u −

1

3
Rᾱuβ̄u|σ

)

+O(ε2) ,

(2.101c)Üαβ =
1

3
gᾱαg

β̄
βRᾱuβ̄u|u +O(ε) ,

where we have introduced yet another variant of the short hand notation of sec-
tion 2.6.2 for contraction of the Riemann tensor involving free indices Rᾱuuσ ≡
Rᾱβ̄γ̄δ̄u

β̄uγ̄σδ̄.

Gravitational case As done for the electromagnetic case we define world line
scalars Uαβ(τ) ≡ Uµν

αβ(x, z(τ))uµuν , Uαβγ(τ) ≡ Uαβµν;γ(x, z(τ))u
µuν for Uµν

αβ and
its derivative at x. Again, the derivative on the world line does not require separate
treatment. Thus

(2.102a)Uαβ(τ) = Uαβ + U̇αβ∆ +
1

2
Üαβ∆

2 +
1

6

...
Uαβ∆

3 +O(∆4) ,

(2.102b)Uαβγ(τ) = Uαβγ + U̇αβγ∆ +
1

2
Üαβγ∆

2 +O(∆3) ,

where all coefficients are to be evaluated on the world line. Repeated use of Eq. (2.30)
to handle the derivatives of the parallel propagator hidden in U̇αβ and Uαβγ yields
expressions for the coefficients

(2.103a)Uαβ = gᾱ(αg
β̄
β)u

ᾱuβ̄ +O(ε4) ,

(2.103b)U̇αβ = gᾱ(αg
β̄
β)

(

Rᾱuσu|u +
1

3
Rᾱuσu|σ

)

uβ̄ +O(ε3) ,

(2.103c)Üαβ =
2

3
gᾱ(αg

β̄
β)Rᾱuuσ|uuβ̄ +O(ε2) ,

and
(2.103d)

...
Uαβ = 0 +O(ε) ,

and

(2.104a)Uαβγ = gᾱ(αg
β̄
β)g

γ̄
γ

(

Rβ̄uγ̄σ +
2

3
Rβ̄uγ̄s|σ

)

uᾱ +O(ε3) ,

(2.104b)U̇αβγ = gᾱ(αg
β̄
β)g

γ̄
γ

(

Rβ̄uγ̄u −
2

3
Rβ̄uγ̄u|σ +

1

3
Rβ̄uγ̄σ|u

)

uᾱ +O(ε2) ,

(2.104c)Üαβγ =
2

3
gᾱ(αg

β̄
β)g

γ̄
γRβ̄uγ̄u|uuᾱ +O(ε) ,

27



CHAPTER 2. THEORETICAL FRAMEWORK

where the parenthesis indicate symmetrization over α and β.
The expressions in Eqs. (2.98), (2.99), and (2.102) form Taylor expansions of the

direct potentials along the world line, evaluating the at τ = v and τ = u respectively
yields the direct potentials at the advanced and retarded points x′′ and x′.

Taylor expansion of the tail terms

In this section we derive expressions for the tail term V appearing in the expressions
for the singular fields Eq. (2.73). As we will see, the scalar and electromagnetic
tail term vanishes to the required order if the background spacetime is a vacuum
spacetime.

Scalar field The scalar tail term is governed by Eq. (2.50), which in vacuum space-
times read

[V ] = 0 ,
(2.105a)

V,ασ
α +

1

2
(σαα − 1)V =

1

2
gµν∇µ∇νU , on the light cone ,

(2.105b)

and
gµν∇µ∇νV = 0 .

(2.105c)

From Eq. (2.97a) we have U = 1 + O(ε4) and thus gµν∇µ∇νU = O(ε2). The data
(initial data and sources) for system Eq. (2.105) therefore vanishes to O(ε2) and the
trivial solution

(2.106)V (x, x′) = 0

clearly solves this system. By uniqueness the trivial solution is also the only solution
and the tail term in Eq. (2.73a) vanishes to second order.

Electromagnetic field The electromagnetic tail term is governed by Eq. (2.57),
which in vacuum spacetimes read

[

V α
β̄

]

= 0 ,

(2.107a)

V α
β̄;γσ

γ +
1

2
(σγγ − 2)V α

β̄ =
1

2
gµν∇µ∇νU

α
β̄, on the light cone ,

(2.107b)

and
gµν∇µ∇νV

α
β̄ = 0 ,

(2.107c)

where it is not immediately obvious why V α
β̄

vanishes. Given Eqs. (2.30) and (2.97b)
it is straightforward to show that

(2.108)gµν∇µ∇νU
α
β̄ =

1

3
gαᾱR

ᾱ µ̄
β̄ ν̄;µ̄σ

ν̄ +O(ε2) .
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We exchange the first and second pair of indices of the Riemann tensor and apply
Bianchi’s identity, which brings the right hand side to the form

(2.109)gµν∇µ∇νU
α
β̄ = −1

3
gαᾱ

(

Rµ̄ ᾱ
ν̄µ̄ ;β̄ +Rµ̄ ;ᾱ

ν̄β̄µ̄

)

σν̄ +O(ε2) .

The O(ε) term vanishes since the contractions of the Riemann tensor vanish in vacuum
spacetimes. Therefore we find a result analogous to the scalar field, namely that the
trivial solution to Eq. (2.107) is the only one and

(2.110)V α
β̄ = 0 +O(ε2)

vanishes up to second order.

Gravitational field For gravity the situation is slightly different since the right
hand side of the light cone differential equation Eq. (2.66b) cannot be shown to vanish
even in vacuum spacetimes. However since we only require a solution V αβ

γ′δ′ up to

terms of order O(ε2) the wave equation Eq. (2.66d) is identically true. We therefore
only consider Eqs. (2.66b) and (2.66c). First consider the term in Eq. (2.66c) involving
σεε. Inspecting the expansion displayed in Eq. (2.29) we find that σεε = 4 + O(ε4).
We use the expansion Eq. (2.30) and argue as in the electromagnetic case that

(2.111)gµν∇µ∇νU
αβ
γ̄δ̄ = 0 +O(ε2) .

Substituting these two results into Eq (2.66c) we find

(2.112)V αβ
γ̄δ̄;εσ

ε + V αβ
γ̄δ̄ = g(γ

γ̄g
δ)
δ̄R

α β
γ δ

with an initial condition
(2.113)

[

V αβ
γ̄δ̄

]

= R(ᾱ β̄)
γ̄ δ̄ .

It is straightforward to guess a solution to this system which is correct to O(ε2). We
find

(2.114)V αβ
γ̄δ̄ = g(γ

γ̄g
δ)
δ̄

(

Rα β
γ δ −

1

2
Rα β

γ δ;εσ
ε +O(ε2)

)

.

Our result agrees with that of Anderson, Flanagan, and Ottewill [35] who derive
results for V αβ

γ̄δ̄
to much higher order.

Eq. (2.114) forms the basis for a Taylor expansion of the tail terms along the world
line. First however we use the symmetry of Vαβγ̄δ̄ to swap the barred and unbarred
points

Vαβγ̄δ̄ = gᾱαg
β̄
β

(

Rᾱγ̄β̄δ̄ −
1

2
Rᾱγ̄β̄δ̄;ε̄σ

ε̄ +O(ε2)
)

,

and calculate the derivative appearing inside the integral of Eq. (2.73c)

(2.115)Vαβγ̄δ̄;ε =
1

2
gᾱαg

β̄
βg

ε̄
εRᾱγ̄β̄δ̄;ε̄ +O(ε) .
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We then define a world line scalar Vαβ ≡ Vαβµνu
µuν, Vαβγ ≡ Vαβµνγu

µuν for Vαβγ′δ′

and its derivative. Thus

(2.116a)Vαβ(τ) = Vαβ + V̇αβ∆ +O(∆2) ,

(2.116b)Vαβγ(τ) = Vαβγ +O(∆) ,

where all coefficients are to be evaluated on the world line. Repeated use of Eq. (2.30)
to handle the derivatives of the parallel propagator hidden in V̇αβ yields expressions
for the coefficients

(2.117a)Vαβ = gᾱαg
β̄
β

(

Rᾱuβ̄u −
1

2
Rᾱuβ̄u|σ

)

+O(ε2) ,

and

(2.117b)V̇αβ =
1

2
gᾱαg

β̄
βRᾱuβ̄u|u +O(ε) ,

and

(2.118)Vαβγ =
1

2
gᾱ(αg

β̄
β)g

γ̄
γRᾱuβ̄u|u +O(ε) .

The expressions in Eqs. (2.116) form Taylor expansions of the gravitational tail
potentials along the world line, evaluating them at τ = v and τ = u respectively
yields the tail potentials at the advanced and retarded points x′′ and x′. Since to the
required order Vαβγ is constant on the world line, the integral term is given by

(2.119)

∫ v

u

∇γVαβµν(x, z(τ))u
µuν dτ = (v − u)

1

2
gᾱ(αg

β̄
β)g

γ̄
γRᾱuβ̄u|u +O(ε2) .

2.7 Final expressions for the singular field

We use the results displayed in the previous sections to obtain an explicit expansion
of the singular field in terms of σᾱ and gᾱα.

Using the results displayed in Eqs. (2.73a), (2.80), (2.98), (2.84), (2.85), (2.90),
(2.90a), and (2.106) [all of them], we obtain for the scalar singular field

ΦS
α(x) =

q

s3
gᾱα

{[

σᾱ + r̄uᾱ

]

+

[
1

6
r̄Rᾱσuσ −

1

3
(r̄2 − s2)Rᾱuσu +

3r̄2 − s2

6s2
Ruσuσσᾱ +

r̄(r̄2 − s2)

2s2
Ruσuσuᾱ

]

+

[

− 1

12
r̄Rᾱσuσ|σ +

1

8
(r̄2 − s2)Rᾱuσu|σ +

1

24
(r̄2 − s2)Rᾱσuσ|u

− 1

12
r̄(r̄2 − 3s2)Rᾱuσu|u +

1

24s2

(

3r̄(r̄2 − s2)Ruσuσ|u − (3r̄2 − s2)Ruσuσ|σ

)

σᾱ

+
r̄2 − s2

8s2

(

(r̄2 − s2)Ruσuσ|u − r̄Ruσuσ|σ

)

uᾱ

]

+O(ε5)

}

.

(2.120)
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Using the results displayed in Eqs. (2.73b), (2.80), (2.99), (2.82), (2.84), (2.85),
(2.90), (2.90a), and (2.110) [all of them], we obtain for the electromagnetic singular
field

AS
α;β(x) = qgᾱαg

β̄
β

{[
1

s3
uᾱσβ̄ +

r̄

s3
uᾱuβ̄

]

+

[
r̄

6s3
uᾱRβ̄σuσ +

( r̄

2s3
σβ̄ +

r̄2 − s2

2s3
uβ̄

)

Rᾱuuσ +
r̄2 − s2

3s2
uᾱRβ̄uuσ

+
1

2s
Rᾱuβ̄σ +

3r̄2 − s2

6s5
Ruσuσuᾱσβ̄ +

r̄(r̄2 − s2)

2s5
Ruσuσuᾱuβ̄ +

r̄

2s
Rᾱuβ̄u

]

+

[

− r̄

12s3
uᾱRβ̄σuσ|σ −

r̄2 − s2

24s3
uᾱRβ̄σσu|u −

( r̄

6s3
σβ̄ +

r̄2 − s2

6s3
uβ̄

)

Rᾱuuσ|σ

− r̄2 − s2

8s3
uᾱRβ̄uuσ|σ −

1

3s2
Rᾱuβ̄σ|σ +

( r̄2 − s2

6s3
σβ̄ +

r̄(r̄2 − 3s2)

6s3
uβ̄

)

Rᾱuuσ|u

+
r̄(r̄2 − 3s2)

12s3
uᾱRβ̄uuσ|u −

r̄

3s
Rᾱuβ̄u|σ +

r̄

6s
Rᾱuβ̄σ|u +

r̄2 + s2

6s3
Rᾱuβ̄u|u

+
(

−3r̄2 − s2

24s5
Ruσuσ|σ +

r̄(r̄2 − s2)

8s5
Ruσuσ|u

)

uᾱσβ̄

+
(

− r̄(r̄
2 − s2)

8s5
Ruσuσ|σ +

(r̄2 − s2)2

8s5
Ruσuσ|u

)

uᾱuβ̄

]}

+O(ε2) .

(2.121)

Using the results displayed in Eqs. (2.73c), (2.80), (2.102), (2.116), (2.82), (2.84),
(2.85), (2.90), (2.90a) and (2.79) [all of them], we obtain for the gravitational singular
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field

γS
αβ;γ(x)

=mgᾱαg
β̄
βg

γ̄
γ

{[(uᾱuβ̄uγ̄ r̄
4

2s5
+
uᾱuβ̄σγ̄ r̄

3

2s5
− uᾱuβ̄uγ̄ r̄

2

s3
− uᾱuβ̄σγ̄ r̄

2s3
+
uᾱuβ̄uγ̄

2s

)

Ruσuσ|u

+
(4uβ̄uγ̄ r̄

3

3s3
+

4uβ̄σγ̄ r̄
2

3s2
− 4uβ̄uγ̄ r̄

s
− 4uβ̄σγ̄

3s

)

Rᾱuuσ|u +
(uᾱuβ̄ r̄

3

3s3
− uᾱuβ̄r̄

s

)

Rγ̄uuσ|u

+
(

−uᾱuβ̄uγ̄ r̄
3

2s5
− uᾱuβ̄σγ̄ r̄

2

2s5
+
uᾱuβ̄uγ̄ r̄

2s3
+
uβ̄uᾱσγ̄

6s3

)

Ruσuσ|σ

+
(2uγ̄ r̄

2

s
+

2σγ̄ r̄

s
+ 2uγ̄s

)

Rᾱuβ̄u|u +
(4uβ̄ r̄

2

3s2
+

4suβ̄
3

)

Rᾱuγ̄u|u

+
(

−uᾱuβ̄ r̄
2

6s3
+
uᾱuβ̄
6s

)

Rγ̄σσu|u +
(

−uᾱuβ̄r̄
2

2s3
+
uᾱuβ̄
2s

)

Rγ̄uuσ|σ

+
(4uβ̄uγ̄ r̄

2

3s2
− 4uβ̄σγ̄ r̄

s3
+

4uβ̄uγ̄

3s

)

Rᾱuuσ|σ −
8uβ̄r̄

3s
Rᾱuγ̄u|σ +

4uβ̄r̄

3s
Rᾱuγ̄σ|u

+
(

−2uγ̄ r̄

s
− σγ̄

s

)

Rᾱuβ̄u|σ −
uᾱuβ̄ r̄

3s2
Rγ̄σuσ|σ −

8uβ̄
3s

Rᾱuγ̄σ|σ − 2sRᾱuβ̄u|γ̄

]

+

[(4uᾱuβ̄ r̄
2

3s3
− 4uᾱuβ̄

3s

)

Rγ̄uuσ +
(4uβ̄uγ̄ r̄

2

s3
+

4uβ̄σγ̄ r̄

s3
− 4uβ̄uγ̄

s

)

Rᾱuuσ|σ

+
(2uᾱuβ̄uγ̄ r̄

3

s5
+

2uᾱuβ̄σγ̄ r̄
2

s5
− 2uᾱuβ̄uγ̄ r̄

s3
− 2uᾱuβ̄σγ̄

3s2

)

Ruσuσ+
(4uγ̄ r̄

s
+

4σγ̄
s

)

Rᾱuβ̄u

+
4uβ̄r̄

s
Rᾱuγ̄u +

2uᾱuβ̄ r̄

3s3
Rγ̄σuσ +

4uβ̄
s
Rᾱuγ̄|σ

]

+
[4uᾱuβ̄(uγ̄ r̄ + σγ̄)

s3

]
}

+O(ε2) .

(2.122)

2.8 Tetrad components

The original mode sum regularization scheme by Barack, Ori, Mino, Nakano and
Tanaka [2] operated on a scalar spherical harmonic decomposition of the self-force
four vector. In our approach we introduce tetrad components of the field gradients
which are proper scalars and can be decomposed into scalar spherical harmonics in a
natural way. We introduce a pseudo-Cartesian tetrad

(2.123a)eα(0) =
[ 1√

f
, 0, 0, 0

]

,

(2.123b)eα(1) =
[

0,
√

f sin θ cosφ,
1

r
cos θ cos φ,− sin φ

r sin θ

]

,

(2.123c)eα(2) =
[

0,
√

f sin θ sinφ,
1

r
cos θ sinφ,

cosφ

r sin θ

]

,

(2.123d)eα(3) =
[

0,
√

f cos θ,−1

r
sin θ, 0

]

together with the complex combinations

(2.123e)eα(±) ≡ eα(1) ± ieα(2) =
[

0,
√

f sin θe±iφ,
1

r
cos θe±iφ,

±ie±iφ
r sin θ

]

,
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where f = 1 − 2M
r

and decompose Φα, Aα;β and γαβ;γ in terms of these.
The pseudo-Cartesian tetrad is orthonormal

(2.124)gαβe
α
(µ)e

β
(ν) = ν(µ)(ν) ,

where ν(µ)(ν) = diag(−1, 1, 1, 1) is the Minkowski metric. With the help of the matrix
inverse ν(µ)(ν) of ν(µ)(ν) we define a dual tetrad

(2.125)e(µ)
α ≡ gαβν

(µ)(ν)eβ(ν) .

The tetrad and its dual satisfy a completeness relation

(2.126)eβ(µ)e
(µ)

α = δβα , eα(µ)e
(ν)

α = δ(µ)
(ν) .

We define tetrad components for example for the scalar field gradient Φα

(2.127a)Φ(µ) = Φαe
α
(µ) ,

(2.127b)Φα = Φ(µ)e
(µ)

α ,

using the completeness relations to guarantee the existence of a unique decomposition.

2.9 Coupling coefficients

The numerical scheme described in section 4 deals with a decomposition of the field
into scalar, vector and tensorial harmonics. In order to obtain tetrad components of
the field gradient from these, we require coupling coefficients similar to the Clebsch-
Gordon coefficients in quantum mechanics.

2.9.1 Scalar coupling coefficients

We require a translation table between the gradient of a scalar spherical harmonic
mode decomposition ∇α(Φ

ℓmYℓm) and a spherical harmonic mode decomposition of
the tetrad components Φℓm

(µ). We begin by writing down the multipole modes of the
tetrad decomposition of the field gradient and gradually substituting for the field
gradient

(2.128)

Φℓm
(µ) =

∫

Φ(µ) Ȳ
ℓm dΩ

=

∫

eα(µ)∇αΦȲ
ℓm dΩ

=

∫

eα(µ)∇α

(
∑

ℓ′,m′

Φℓ′m′

Yℓ′m′

)

Ȳ ℓm dΩ

=
∑

ℓ′,m′

∫ (

ea(µ)Φ
ℓ′m′

,a Yℓ′m′ + eA(µ)Φ
ℓ′m′

Yℓ′m′,A

)

Ȳ ℓm dΩ

=
∑

ℓ′,m′

(

Φℓ′m′

,a

∫

ea(µ)Yℓ′m′ Ȳ ℓm dΩ + Φℓ′m′

∫

eA(µ)Yℓ′m′,AȲ
ℓm dΩ

)

≡
∑

ℓ′,m′

(

Ca
(µ)(ℓm|ℓ′m′)Φℓ′m′

,a + C(µ)(ℓm|ℓ′m′)Φℓ′m′

)

,
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where in the third line we used the convention to designate angular indices θ, φ
by capital Latin letters and use lowercase Latin letters for r and t indices. The
coupling coefficients are integrals over three spherical harmonics—one hidden in the
angular dependence of the basis vectors—that can be evaluated using the results in
chapter 12.6 of [36] as outlined in [23]. After some algebra we find the non-vanishing
coefficients

(2.129a)Ct
(0)(ℓm|ℓ′m′) =

1√
f
δℓl′δmm′ ,

(2.129b)

Cr
(+)(ℓm|ℓ′m′) = −

√

(ℓ+m− 1)(ℓ+m)

(2l − 1)(2l + 1)

√

fδℓ′,ℓ−1δm′,m−1

+

√

(ℓ−m+ 1)(ℓ−m+ 2)

(2l + 1)(2l + 3)

√

fδℓ′,ℓ+1δm′,m−1 ,

(2.129c)

Cr
(−)(ℓm|ℓ′m′) =

√

(ℓ−m− 1)(ℓ−m)

(2l − 1)(2l + 1)

√

f δℓ′,ℓ−1δm′,m+1

−
√

(ℓ+m+ 1)(ℓ+m+ 2)

(2l + 1)(2l + 3)

√

fδℓ′,ℓ+1δm′,m+1 ,

(2.129d)

Cr
(3)(ℓm|ℓ′m′) =

√

(ℓ−m)(ℓ +m)

(2l − 1)(2l + 1)

√

fδℓ′,ℓ−1δm′m

+

√

(ℓ−m+ 1)(ℓ+m+ 1)

(2l + 1)(2l + 3)

√

fδℓ′,ℓ+1δm′m ,

(2.129e)

C(+)(ℓm|ℓ′m′) =

√

(ℓ+m− 1)(ℓ+m)

(2l − 1)(2l + 1)

ℓ− 1

r
δℓ′,ℓ−1δm′,m−1

+

√

(ℓ−m+ 1)(ℓ−m+ 2)

(2l + 1)(2l + 3)

ℓ+ 2

r
δℓ′,ℓ+1δm′,m−1. ,

(2.129f)

C(−)(ℓm|ℓ′m′) = −
√

(ℓ−m− 1)(ℓ−m)

(2l − 1)(2l + 1)

ℓ− 1

r
δℓ′,ℓ−1δm′,m+1

−
√

(ℓ+m+ 1)(ℓ+m+ 2)

(2l + 1)(2l + 3)

ℓ+ 2

r
δℓ′,ℓ+1δm′,m+1. ,

and

(2.129g)

C(3)(ℓm|ℓ′m′) = −
√

(ℓ−m)(ℓ+m)

(2l − 1)(2l + 1)

ℓ− 1

r
δℓ′,ℓ−1δm′m

+

√

(ℓ−m+ 1)(ℓ+m+ 1)

(2l + 1)(2l + 3)

ℓ+ 2

r
δℓ′,ℓ+1δm′m. .

34



CHAPTER 2. THEORETICAL FRAMEWORK

2.9.2 Electromagnetic coupling coefficients

Similar to the scalar case we require coupling coefficients to translate between the
modes of the vector potential Aℓma , vℓm, ṽℓm (as defined in section 4.3) and the tetrad
components of the Faraday tensor

(2.130)Fαβ = Aβ,α − Aα,β .

The tetrad components F(µ)(ν) are decomposed in terms of scalar spherical har-
monics

(2.131)F(µ)(ν) =
∑

ℓ,m

F ℓm
(µ)(ν)Yℓm ,

where each mode is given by

(2.132)F ℓm
(µ)(ν) =

∫

F(µ)(ν)Ȳℓm dΩ .

To obtain expressions for the coupling coefficients we substitute F(µ)(ν) = Fαβe
α
(µ)e

β
(ν)

into Eq. (2.132)

F ℓm
(µ)(ν) =

∫

dΩF(µ)(ν)Ȳ
ℓm

=

∫

dΩ (Aβ,α − Aα,β) e
α
(µ)e

β
(ν)Ȳ

ℓm

=

∫
∑

ℓ′,m′

[

(Ab,a − Aa,b) e
a
(µ)e

b
(ν)Ȳ

ℓm + (Ab,A −AA,b) e
A
(µ)e

b
(ν)Ȳ

ℓm

+ (AB,a − Aa,B) ea(µ)e
B
(ν)Ȳ

ℓm + (AB,A −AA,B) eA(µ)e
B
(ν)Ȳ

ℓm
]

dΩ

≡
∑

ℓ′,m′

[

Cab
(µ)(ν)(ℓ

′m′|ℓm)
(

Aℓ
′m′

b,a − Aℓ
′m′

a,b

)

+Da
(µ)(ν)(ℓ

′m′|ℓm)
(

∂av
ℓ′m′ −Aℓ

′m′

a

)

+ Ea
(µ)(ν)(ℓ

′m′|ℓm)∂aṽ
ℓ′m′

+ E(µ)(ν)(ℓ
′m′|ℓm)ṽℓ

′m′

]

,

(2.133)

which defines the coupling coefficients. It is often possible to express these coupling
in coefficients in terms of linear combinations of the coupling coefficients derived in
section 3.6 for the scalar field. To simplify the notation of the coupling coefficients
we use

(2.134a)γℓm =

√

(ℓ+m)(ℓ +m+ 1)

(2ℓ+ 1)(2ℓ+ 3)
,

(2.134b)ǫℓm =

√

(ℓ+m+ 1)(ℓ−m+ 1)

(2ℓ+ 1)(2ℓ+ 3)
,

as shorthands for recurring combinations of terms. Similarly it proves useful to define
lower order “coupling coefficients” for the odd sector, which is absent in the scalar
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case.

(2.135a)E(+)(ℓ
′m′|ℓm) = − i

r

√

(ℓ−m+ 1)(ℓ+m)δℓ′ℓδm′m−1 ,

(2.135b)E(−)(ℓ
′m′|ℓm) = − i

r

√

(ℓ+m+ 1)(ℓ−m)δℓ′ℓδm′m+1 .

In terms of these, the first coefficient for the expansion of F(0)(+) is given by

(2.136)

Ctr
(0)(+)(ℓ

′m′|ℓm) =

∫

Y ℓ′m′

et(0)e
r
(+)Ȳ

ℓm dΩ

=
1√
f

∫

Y ℓ′m′

er(+)Ȳ
ℓm dΩ

= Cr
(+)(ℓ

′m′|ℓm)/
√

f ,

where Cr
(+)(ℓ

′m′|ℓm) is the scalar coupling coefficient given in Eq. (2.129b). All other

combinations of a, b and (µ), (ν) lead to a vanishing Cab
(µ)(ν). Similarly for the remain-

ing non-vanishing coefficients for the F(0)(+) component

(2.137a)Dt
(0)(+)(ℓ

′m′|ℓm) = C(+)(ℓ
′m′|ℓm)/

√

f ,

(2.137b)Et
(0)(+)(ℓ

′m′|ℓm) = E(+)(ℓ
′m′|ℓm)/

√

f .

The coupling coefficients for F(+)(−) contain both even and odd modes. The first
non-vanishing one is Dr

(+)(−)(ℓ
′m′|ℓm), which is given by

(2.138)

Dr
(+)(−)(ℓ

′m′|ℓm) =
√

fγℓ,−m+1C(−)(ℓ
′m′|ℓ+ 1, m− 1)

−
√

fγℓ−1,mC(−)(ℓ
′m′|ℓ− 1, m− 1)

+
√

fγℓ,m+1C(+)(ℓ
′m′|ℓ+ 1, m+ 1)

−
√

fγℓ−1,−mC(+)(ℓ
′m′|ℓ− 1, m+ 1)

while the coefficients coupling to odd modes are

(2.139a)

Er
(+)(−)(ℓ

′m′|ℓm) =
√

fγℓ,−m+1E(−)(ℓ
′m′|ℓ+ 1, m− 1)

−
√

fγℓ−1,mE(−)(ℓ
′m′|ℓ− 1, m− 1)

+
√

fγℓ,m+1E(+)(ℓ
′m′|ℓ+ 1, m+ 1)

−
√

fγℓ−1,−mE(+)(ℓ
′m′|ℓ− 1, m+ 1) ,

(2.139b)E(+)(−)(ℓ
′m′|ℓm) = −2i/r2(ℓ+ 1)(ℓ+ 2)ǫℓmδℓ′ℓ+1δm′m

− 2i/r2(ℓ− 1)ℓǫℓ−1,mδℓ′ℓ−1δm′m .
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Chapter 3

Regularization parameters

3.1 Multipole coefficients

In this section we derive expressions for the multipole coefficients, values of the modes
of a spherical harmonic decomposition of a scalar function at the north pole of a
specific angular coordinate system. The material in this chapter is patterned after
the treatment in [18], [15] and [37].

Let α, β be angular coordinates on a sphere in Schwarzschild spacetime. Let F(µ)

be a scalar function, which we envision to be a tetrad component of the force. We
introduce multipole coefficients F ℓ

(µ) via

(3.1)F(µ) =
∑

ℓ

F ℓ
(µ) , F ℓ

(µ) ≡
∑

m

F ℓm
(µ) (t, r)Yℓm(0, ?) , F ℓm

(µ) =

∫

F(µ)Ȳ
ℓm dΩ .

Here ? stands for an arbitrary angle β since at the north pole α = 0 the angle β is
irrelevant. Further at the north pole all but the m = 0 spherical harmonics vanish
(see Eq. (12.6.2) in [36])

(3.2)Yℓm(0, β) =

√

2ℓ+ 1

4π
δm0 ,

therefore the sum over m in Eq. (3.1) collapses and the multipole coefficients are given
by

(3.3)F ℓ
(µ) =

√

2ℓ+ 1

4π
F ℓ0

(µ) .
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The spherical harmonic mode F ℓ0
(µ) in turn is given by

(3.4)F ℓ0
(µ) =

∫

F(µ)Ȳ
ℓ0 dΩ =

∫ (∫

F(µ)

√

2ℓ+ 1

4π
Pℓ(cosα) dcosα

)

dβ ,

where we have substituted

(3.5)Yℓm =

√

2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (cosα)eimβ

for the spherical harmonic. Clearly then we can evaluate the multipole coefficients as

(3.6)F ℓ
(µ) =

1

2π

∫ (
2ℓ+ 1

2

∫

F(µ)(r, t, α, β)Pℓ(cosα) dcosα

)

︸ ︷︷ ︸

Legendre decomposition

dβ

︸ ︷︷ ︸

average over β

,

ie. by first decomposing in terms Legendre polynomials and then averaging over β.
Note that on occasion we will reverse the order of the integrals in order to show that
certain terms vanish when averaged over β.

3.2 Mode sum regularization

For a singular source term ρ(x), jα(x) or Tαβ(x) the retarded solution of the wave
equations Eqs. (2.44), (2.53) and (2.63) diverges at the position of the particle. De-
composing into scalar, vector and tensorial spherical harmonic modes, however, we
find that each mode separately is continuous (but not differentiable) at the position
of the particle, denoted

(3.7)x0 = [t0, r0,
π

2
, ϕ0] .

The mode-sum regularization procedure of Barack, Ori, Mino, Sasaki and Tanaka [2]
first calculates each mode, then regularizes each mode individually and finally sums
the modes to retrieve the regularized force. Schematically, using scalar harmonics
to decompose the (vector) force on the particle, this means that the force (which
corresponds to the field gradient) is decomposed into spherical harmonic modes as
follows

(3.8a)F ret
α =

∞∑

ℓ=0

ℓ∑

m=−ℓ

F ret,ℓm
α (t, r)Yℓm(θ, φ) ,

(3.8b)F ret,ℓm
α (t, r) =

∫

F ret
α (t, r, θ, φ)Ȳ ℓm(θ, φ) dΩ .

For each ℓ-mode we form multipole coefficients

(3.9)F ret,ℓ
α ≡

ℓ∑

m=−ℓ

F ret,ℓm
α Yℓm(π

2
, ϕ0)
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which are finite at the position of the particle. The regularized self-force is calculated
as

(3.10)FR
α =

∑

ℓ

{

F ret,ℓ
α − q

[

Aα

(

ℓ+
1

2

)

+Bα +
Cα
ℓ+ 1

2

+
Dα

(ℓ− 1
2
)(ℓ+ 3

2
)

+ . . .
]}

,

where the regularization parameter Aα, Bα, Cα and Dα are independent of ℓ. The
terms in square brackets in Eq. (3.10) are the multipole coefficients of the singular
field. Strictly speaking, only the Aα, Bα and Cα terms are required to regularize the
mode sum. The Dα terms correspond to a regular contribution and their sum vanishes
identically. Removing the Dα terms, however, results in a sum which converges faster,
allowing us to calculate fewer ℓ modes to reach a given accuracy for the self-force.
Numerically therefore the inclusion of the Dα terms is advantageous.

Since the singular field gradient modes are discontinuous across the position of
the particle we cannot evaluate the analog of Eq. (3.8b) on a sphere containing the
position of the particle. We therefore evaluate the integral on a slightly larger sphere
of radius r0 + ∆ and take a one-sided limit ∆ → 0+ to handle the discontinuity. For
similar reasons, we follow Barack [37] and obtain the multipole coefficients of the
singular field gradient not at x0 but at the displaced point x′0 = [t, r0 + ∆, π/2, ϕ′

0]
where

(3.11)ϕ′
0 = ϕ0 − c∆, c =

r0Jṙ0
(r0 − 2M)(r2

0 + J2)
.

3.3 Rotation of coordinates

The multipole coefficients of Φℓ
(µ), A

ℓ
(µ)(ν) and γℓ(µ)(ν)(λ) are invariant under a rotation

of the angles θ and φ. This follows from the fact that a rotation [θ, φ] 7→ [α, β]
maps each spherical harmonic Yℓm(θ, φ) to a linear combination of Yℓm(α, β) coupling
terms of different m, but leaving ℓ alone. Since the multipole coefficients result from
a summation over m they are unchanged under such a coordinate transformation.
Following Mino [15] we use this property to introduce new angular coordinates α,
β in which the point [π

2
, ϕ′

0] is rotated to the north pole [α = 0, β = ?]. Here ?
indicates that the value of β is irrelevant. Such a rotation simplifies the calculations
significantly since the regularization parameters, which are the multipole coefficients
of the singular field gradient evaluated at the location of the particle, can be evaluated
at the special point α = 0 instead of the generic point [θ = π/2, φ = ϕ0(t)]. Formally
the rotation is described by

(3.12a)sin θ cos(φ− ϕ′
0) = cosα ,

(3.12b)sin θ sin(φ− ϕ′
0) = sinα cosβ ,

(3.12c)cos θ = sinα sin β .

3.4 Representation of the displacement vector

The key step of mode sum regularization is to obtain the modes of the singular field
gradient on a sphere which does not include the location of the particle. For a particle
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located at
(3.13)x0 = [t, r0, π/2, ϕ0]

we use a sphere of slightly large radius r0 +∆ and therefore have for the displacement
vector wα

(3.14)wα = [0,∆, θ − π/2, φ− ϕ0] ,

where the displacement in φ is calculated with respect to ϕ0 not ϕ′
0 of Eq. (3.12). In

terms of the angles α and β defined in section 3.3, the angular components of wα are
given by

(3.15)wθ = − arcsin(sinα sin β) , and wφ = arcsin
( sinα cosβ

√

1 − sin2 α sin2 β

)

− c∆.

We define an auxiliary variable

(3.16)Q ≡
√

1 − cosα⇔ sin(α) = Q
√

2 −Q2 ,

which is of the same order as α and thus ∆. Expanding Eq. (3.15) we obtain an
expansion of wα in terms of functions globally defined on the sphere

(3.17a)wθ = −
√

2Q sin β −
√

2

12
Q3(1 − 4 cos2 β) sinβ +O(Q5) ,

(3.17b)wφ = −c∆ +
√

2Q cosβ +

√
2

12
Q3(9 − 8 cos2 β) cosβ +O(Q5) .

3.5 Squared distance function

The last piece of machinery we need is the leading order term of the squared distance
function

(3.18)ρ̃2 = gαβw
αwβ ,

where the metric is to be evaluated at the particle’s location x0. Keeping only the
leading order term in Q and ∆ we find

(3.19a)ρ2 =
r4
0E

2

(r0 − 2M)2(r2
0 + J2)

∆2 + 2(r2
0 + J2)χQ2 ,

where

(3.19b)χ ≡ 1 − k sin2 β , k ≡ J2

r2
0 + J2

.

Substituting for Q this can be rewritten in the form

(3.20)ρ2 = 2(r2
0 + J2)χ(δ2 + 1 − cosα) , with δ2 ≡ E2r4

0

2(r2
0 + J2)2(r0 − 2M)2

∆2

χ
.

We use the results displayed in Eq. (3.19) to write the field gradients in terms of ρ, Q,
∆, χ cosβ and sin β such that Q, cosβ and sin β occur only linearly, higher powers
having been replaced by ρ and χ respectively.
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3.6 Scalar field

A calculation of the scalar regularization parameters begins with Eq. (2.120). We
introduce tetrad components of the field gradient using the tetrad of section 2.8

(3.21)ΦS
(µ) ≡ ΦS

αe
α
(µ) ,

which permits a clean calculation of the regularization parameters using only scalar
spherical harmonics.

Using the symbolic manipulator GRTensor II which runs under Maple we sub-
stitute Eqs. (2.31), (2.38), (2.39), (2.43), (3.17), wt = 0, wr = ∆ and (3.19) into
Eq. (3.21). The resulting expression is much to long to be displayed here, containing
several hundred thousand terms. Instead we list its overall structure in terms of ∆,
ρ, and Q, cos β, sin β.

(3.22a)ΦS
(µ) = ΦS

(µ),−2 + ΦS
(µ),−1 + ΦS

(µ),0 + ΦS
(µ),1 +O(ε2) ,

(3.22b)ΦS
(µ),−2 = O(∆/ρ3) +O(Q cosβ/ρ3) ,

(3.22c)ΦS
(µ),−1 = O(1/ρ) +O(Q cosβ∆/ρ3) +O(∆2/ρ3)

+O(Q cosβ∆3/ρ5) +O(∆4/ρ5) ,

(3.22d)ΦS
(µ),0 = O(Q cosβ/ρ) +O(∆/ρ) +O(Q cosβ∆2/ρ3) +O(∆3/ρ3)

+O(Q cosβ∆4/ρ5) +O(∆5/ρ5) +O(Q cosβ∆6/ρ7) + O(∆7/ρ7) ,

and

(3.22e)
ΦS

(µ),+1 = O(ρ) +O(Q cosβ∆/ρ) +O(∆2/ρ) +O(Q cosβ∆3/ρ3) +O(∆4/ρ3)

+O(Q cosβ∆5/ρ5) +O(∆6/ρ5) +O(Q cosβ∆7/ρ7)

+O(∆8/ρ7) +O(Q cosβ∆9/ρ9) +O(∆10/ρ9) ,

where O( ) stands for terms that involve only a particular combination of ∆, ρ, and
Q, cos β, sin β with coefficients that might depend on χ, r0, ṙ0, E, J , etc. Of the
terms listed in Eq. (3.22) only a handful survive the multipole decomposition and do
not vanish for ∆ → 0. Based on the results of Appendix B, we can formulate a set of
rules as to which terms vanish:� All terms containing isolated occurrences of cosβ vanish since the average in

Eq. (B.2) is zero.� All terms of the form ∆n/ρm with n+ 2 > m, m odd vanish. This follows from
Eqs. (B.5) and (B.6). A term 1/ρm gives rise to a coefficient A−k−1/2 involving
δ−2m+2 which in turn is proportional to ∆−2m+2 overwhelming the term ∆n.

These two rules eliminate almost all of the terms in Eq. (3.22), the only ones surviving
being

(3.23a)ΦS
(µ),−2 = O(∆/ρ3) ,

(3.23b)ΦS
(µ),−1 = O(1/ρ) ,
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and
(3.23c)ΦS

(µ),+1 = O(ρ) .

Note that there is no ΦS
(µ),0 term anymore; such a term would correspond to a C

regularization parameter and cannot occur if the procedure is well defined [1]. We
introduce the notation (x)ℓ for the multipole coefficient of a term x and use the results
of Eq. (3.6), Eq. (B.5) and (B.2) to find the multipole coefficients of the terms listed
in Eq. (3.23)

(3.24a)
(
∆/ρ3

)

ℓ =

(

ℓ+
1

2

)
r0 − 2M

Er3
0

sign(∆) +O(∆) ,

(3.24b)
(
χ−p/ρ

)

ℓ =
F (p+ 1

2
, 1

2
; 1; k)

√

r2
0 + J2

+O(∆) ,

and

(3.24c)
(
χ−pρ

)

ℓ = −
√

r2
0 + J2F (p− 1

2
, 1

2
; 1; k)

(l − 1
2
)(l + 3

2
)

+O(∆) ,

where sign(∆) is equal to +1 if ∆ > 0 and to −1 if ∆ < 0. Finally we express the
hypergeometric functions in terms of (rescaled) complete elliptic integrals

(3.25a)E ≡ 2

π

∫ π/2

0

(1 − k sin2 ψ)1/2 dψ = F (−1
2
, 1

2
; 1; k) ,

and

(3.25b)K ≡ 2

π

∫ π/2

0

(1 − k sin2 ψ)−1/2 dψ = F (1
2
, 1

2
; 1; k)

in which k ≡ J2/(r2
0 +J2). We identify the regularization parameters A(µ), B(µ), C(µ),

and D(µ) defined by

(3.26)F S
(µ) ≡

∑

ℓ

[(

ℓ+
1

2

)

A(µ) +B(µ) +
C(µ)

ℓ+ 1
2

+
D(µ)

(ℓ− 1
2
)(ℓ+ 3

2
)

+ . . .

]

,

and find

(3.27a)A(0) =
ṙ0√

f0(r2
0 + J2)

sign(∆) ,

and

(3.27b)A(+) = −eiϕ0
E√

f0(r2
0 + J2)

sign(∆) .

We also find

(3.28a)B(0) = − Er0ṙ0√
f0(r2

0 + J2)3/2
E +

Er0ṙ0
2
√
f0(r2

0 + J2)3/2
K ,

(3.28b)B(+) = eiϕ0

(

Bc
(+) − iBs

(+)

)

,

(3.28c)

Bc
(+) =

[
r0ṙ

2
0√

f0(r2
0 + J2)3/2

+

√
f0

2r0
√

r2
0 + J2

]

E

−
[

r0ṙ
2
0

2
√
f0(r2

0 + J2)3/2
+

√
f0 − 1

r0
√

r2
0 + J2

]

K ,
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and

(3.28d)Bs
(+) = − (2 −√

f0)ṙ0

2J
√

r2
0 + J2

√
f0

E +
(2 −√

f0)ṙ0

2J
√

r2
0 + J2

√
f0

K, .

We also find
(3.29)C(µ) = 0

and

D(0) = −
[
Er3

0(r
2
0 − J2)ṙ3

0

2
√
f0(r

2
0 + J2)7/2

+
E(r7

0 + 30Mr6
0 − 7J2r5

0 + 114MJ2r4
0 + 104MJ4r2

0 + 36MJ6)ṙ0
16r4

0

√
f0(r2

0 + J2)5/2

]

E

+

[
Er3

0(5r
2
0 − 3J2)ṙ3

0

16
√
f0(r

2
0 + J2)7/2

+
E(r5

0 + 16Mr4
0 − 3J2r3

0 + 42MJ2r2
0 + 18MJ4)ṙ0

16r2
0

√
f0(r

2
0 + J2)5/2

]

K ,

(3.30a)

and

D(+) = eiϕ0

(

Dc
(+) − iDs

(+)

)

,

(3.30b)

Dc
(+) =

[
r3
0(r

2
0 − J2)ṙ4

0

2
√
f0(r2

0 + J2)7/2
− r0ṙ

2
0

4(r2
0 + J2)3/2

+
(3r7

0 + 6Mr6
0 − J2r5

0 + 31MJ2r4
0 + 26MJ4r2

0 + 9MJ6)ṙ2
0

4r4
0

√
f0(r2

0 + J2)5/2

+
(3r7

0 + 8Mr6
0 + J2r5

0 + 26MJ2r4
0 + 22MJ4r2

0 + 8MJ6)
√
f0

16r6
0(r

2
0 + J2)3/2

− r3
0 + 2Mr2

0 + 4MJ2

8r4
0

√

r2
0 + J2

]

E +

[

− r3
0(5r

2
0 − 3J2)ṙ4

0

16
√
f0(r2

0 + J2)7/2
+

r0ṙ
2
0

8(r2
0 + J2)3/2

− (7r5
0 + 12Mr4

0 − J2r3
0 + 46MJ2r2

0 + 18MJ4)ṙ2
0

16r2
0

√
f0(r2

0 + J2)5/2

− (7r5
0 + 6Mr4

0 + 6J2r3
0 + 12MJ2r2

0 + 4MJ4)
√
f0

16r4
0(r

2
0 + J2)3/2

+
3

8r0
√

r2
0 + J2

]

K ,

(3.30c)

Ds
(+) =

[
r2
0(r

2
0 − 7J2)(

√
f0 − 2)ṙ3

0

16J
√
f0(r2

0 + J2)5/2

− (2r7
0 +Mr6

0 + 5J2r5
0 + 10MJ2r4

0 + 29MJ4r2
0 + 14MJ6)ṙ0

8r5
0J(r2

0 + J2)3/2

+
(r5

0 −Mr4
0 + 4J2r3

0 − 5MJ2r2
0 + 2MJ4)ṙ0

4r3
0J

√
f0(r

2
0 + J2)3/2

]

E +

[

−r
2
0(r

2
0 − 3J2)(

√
f0 − 2)ṙ3

0

16J
√
f0(r

2
0 + J2)5/2

+
(4r5

0 + 2Mr4
0 + 7J2r3

0 + 10MJ2r2
0 + 14MJ4)ṙ0

16r3
0J(r2

0 + J2)3/2

− (2r3
0 − 2Mr2

0 + 5J2r0 − 8MJ2)ṙ0
8r0J

√
f0(r2

0 + J2)3/2

]

K .

(3.30d)
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Finally we use the regularization parameters to regularize the retarded field gra-
dient

(3.31)ΦR
(µ) =

∑

ℓ

{

Φret
(µ),ℓ − q

[

A(µ)

(

ℓ+
1

2

)

+B(µ) +
C(µ)

ℓ+ 1
2

+
D(µ)

(ℓ− 1
2
)(ℓ+ 3

2
)

+ · · ·
]}

.

3.7 Electromagnetic field

A calculation of the scalar regularization parameters begins with Eq. (2.121). We
introduce tetrad components of the Faraday tensor using the tetrad of section 2.8

(3.32)F S
(µ)(ν) ≡

(

AS
β;α − AS

α;β

)

eα(µ)e
β
(ν) ,

which permits a clean calculation of the regularization parameters using only scalar
spherical harmonics.

As in section 3.6 we use the symbolic manipulator GRTensor II which runs under
Maple to substitute Eqs. (2.31), (2.38), (2.39), (2.43), (3.17), wt = 0, wr = ∆ and
(3.19) into Eq. (3.32). The overall structure of the resulting expression in terms of
∆, ρ, and Q, cos β, sin β is

(3.33a)F S
(µ)(ν) = F S

(µ)(ν),−2 + F S
(µ)(ν),−1 + F S

(µ)(ν),0 + F S
(µ)(ν),1 +O(ε2) ,

(3.33b)F S
(µ)(ν),−2 = O(∆/ρ3) +O(Q cosβ/ρ3) ,

(3.33c)F S
(µ)(ν),−1 = O(1/ρ) +O(Q cosβ∆/ρ3) +O(∆2/ρ3)

+O(Q cosβ∆3/ρ5) +O(∆4/ρ5) ,

(3.33d)F S
(µ)(ν),0 = O(Q cosβ/ρ) +O(∆/ρ) +O(Q cosβ∆2/ρ3) +O(∆3/ρ3)

+O(Q cosβ∆4/ρ5) +O(∆5/ρ5) +O(Q cosβ∆6/ρ7) +O(∆7/ρ7) ,

and

(3.33e)
F S

(µ)(ν),+1 = O(ρ) +O(Q cosβ∆/ρ) +O(∆2/ρ) +O(Q cosβ∆3/ρ3)

+O(∆4/ρ3) +O(Q cosβ∆5/ρ5) +O(∆6/ρ5) +O(Q cosβ∆7/ρ7)

+O(∆8/ρ7) +O(Q cosβ∆9/ρ9) +O(∆10/ρ9) ,

where O( ) stands for terms that involve only a particular combination of ∆, ρ, and
Q, cosβ, sin β with coefficients that might depend on χ, r0, ṙ0, E, J , etc. Using the
rules listed in section 3.6 we eliminate all but a handful of terms

(3.34a)F S
(µ)(ν),−2 = O(∆/ρ3) ,

(3.34b)F S
(µ)(ν),−1 = O(1/ρ) ,

and
(3.34c)F S

(µ)(ν),+1 = O(ρ) .

As for the scalar case there is no F S
(µ)(ν),0 term anymore. Using the results of Eq. (3.6),

Eq. (B.5) and (B.2) we obtain the multipole coefficients of the remaining terms and
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after re-expanding the resulting hypergeometric functions in terms of the elliptic
integrals of section (3.6) we obtain regularization parameters

A(0)(+) = sign(∆)
[ iṙ0J

r0fa2
− 1

r2
0

]

eiϕ0 ,

(3.35a)

B(0)(+) =

{[

−iE(J2 − r2
0)ṙ0

a3πfJ
+
E(2 − f)

πfar0

]

E − ir2
0Eṙ0
a3Jfπ

K
}

eiϕ0 ,

(3.35b)
D(0)(+)

=

{[
iEr2

0(−14r2
0J

2 + J4 + r4
0)ṙ

3
0

8πJfa7
− (−r0fJ2 + 2r0J

2 + 7r3
0f − 14r3

0)Eṙ
2
0

8a5fπ

+ i
(

8MJ8 − 14MJ6r2
0 − 3r5

0J
4 − 80MJ4r4

0 + 4J4r5
0f − 7r7

0J
2 − 68Mr6

0J
2 + 4r9

0

− 26Mr8
0 − 4r9

0f
)

Eṙ0

/(

8r5
0a

5fJπ
)

−
(

8Mr0fJ
6 − 8r3

0MJ4 + 38J4r3
0f − 2r6

0J
2 − 16Mr5

0J
2 + 3J2r6

0f + 54J2r5
0f

+ 20r7
0f + 5r8

0f − 6r8
0

)

E
/(

8r7
0a

3fπ
)]

E

+

[
iEr4

0(7J
2 − r2

0)ṙ
3
0

8πJfa7
− (2 − f)r3

0Eṙ
2
0

2a5fπ

+
(4Mr0fJ

4 + 20J2r3
0f + 8Mr3

0J
2 + 14r5

0Mf − 2r6
0 + 12Mr5

0 + r6
0f)E

8r5
0a

3fπ

− i(2MJ6 − 9Mr2
0J

4 − 2J2r5
0f − 20Mr4

0J
2 − 2r7

0f + 2r7
0 − 13Mr6

0)Eṙ0
4r3

0a
5fJπ

]

K
}

eiϕ0 ,

(3.35c)

A(+)(−) = sign(∆)
2iEJ

a2r0f
eiϕ0 ,

(3.35d)

B(+)(−) = −2i

{[

−(r2
0 − J2)ṙ2

0

a3πJf
+

−J2r0f + 2r0J
2 + 2r3

0 − 2r3
0f

r3
0aJπ

]

E

+

[
r2
0 ṙ

2
0

a3fJπ
− 2(1 − f)

aJπ

]

K
}

eiϕ0 ,

(3.35e)
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D(+)(−) = −2i

{[

−r
2
0(−14r2

0J
2 + J4 + r4

0)ṙ
4
0

8fπJa7

−
(

4MfJ8 − 7Mr2
0fJ

6 + 2J4r5
0f + 2J4r4

0M − J4r5
0 − 43J4r4

0fM − 7J2r7
0f

− 27J2Mr6
0f − 11Mr8

0f − r9
0f + r9

0 − 2r8
0M

)

r
1/2
0 ṙ2

0

/(

4r5
0a

5Jfπ
)

−
(

8MfJ8−8J6Mr2
0 +30Mr2

0fJ
6−2J4r5

0 +10J4r4
0fM−24J4r4

0M+3J4r5
0f

− 28J2Mr6
0 + J2r7

0f − 28J2Mr6
0f − 20Mr8

0f − 12r8
0M

)/(

8r7
0a

3Jπ
)]

E

+

[

−r
4
0(7J

2 − r2
0)ṙ

4
0

8fπJa7
+

(

4MfJ6 − 16J4Mr2
0 + 4r2

0fMJ4 − 18J2r4
0fM

− 28J2r4
0M − J2fr5

0 − 12r6
0M − 20r6

0fM
)/(

8r5
0a

3Jπ
)

+
(

2MfJ6 − 9r2
0fMJ4 + J2r5

0 − 2J2r4
0M − 5J2fr5

0 − 14J2r4
0fM − 2r6

0M

+ r7
0 − 11r6

0fM − fr7
0

)

ṙ2
0

/(

4r
5/2
0 a5Jfπ

)]

K
}

eiϕ0 ,

(3.35f)

where f =
√

r0−2M
r0

, a2 = r2
0 + J2.

Finally we use the regularization parameters to regularize the retarded Faraday
tensor

FR
(µ)(ν) =

∑

ℓ

{

F ret
(µ)(ν),ℓ− q

[

A(µ)(ν)

(

ℓ+
1

2

)

+B(µ)(ν) +
C(µ)(ν)

ℓ+ 1
2

+
D(µ)(ν)

(ℓ− 1
2
)(ℓ+ 3

2
)
+ · · ·

]}

.

(3.36)

3.8 Gravitational field

A calculation of the scalar regularization parameters begins with Eq. (2.122). For the
gravitational case we deviate slightly from the procedure introduced in sections 3.6
and 3.7 and calculate regularization parameters not for the field gradient γαβ;γ but
instead for the force acting on the particle [33]

(3.37a)Fα = k βγδ
α γαβγ ,

(3.37b)k βγδ
α =

1

2
uβuγδ δ

α +
1

4
gβγδαδ +

1

4
uαg

βγuδ − δαβuγuδ − 1

2
uαu

βuγuδ .

The projector k βγδ
α in Eq. (3.37) involves the four velocity uα of the particle, which is

only defined on the world line. In order to be able to evaluate the singular force away
from the world line we must extend uα away from the world line. For a first order
calculation of the self-force, all extensions which smoothly approach the four velocity
on the world line are equivalent. We choose the simplest one and rigidly extend uα
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away from the world line; this means that the contravariant components uα expressed
in Schwarzschild coordinates are kept constant as we move away from the world line.

Our reason for choosing to regularize Fα instead of γαβ;γ is purely based in con-
venience of calculation, there are fewer components to Fα than there are to γαβ;γ.

We introduce tetrad components of the force using the tetrad of section 2.8

(3.38)F S
(µ) ≡ F S

αe
α
(µ) ,

which permits a clean calculation of the regularization parameters using only scalar
spherical harmonics.

As in section 3.6 we use the symbolic manipulator GRTensor II which runs under
Maple to substitute Eqs. (2.31), (2.38), (2.39), (2.43), (3.17), wt = 0, wr = ∆ and
(3.19) into Eq. (3.38). The resulting expression is very much to long to be displayed
here, containing several hundred thousand terms. Instead we list its overall structure
in terms of ∆, ρ, and Q, cosβ, sin β.

(3.39a)F S
(µ) = F S

(µ),−2 + F S
(µ),−1 + F S

(µ)(ν),0 + F S
(µ),1 +O(ε2) ,

(3.39b)F S
(µ),−2 = O(∆/ρ3) +O(Q cosβ/ρ3) ,

(3.39c)F S
(µ),−1 = O(1/ρ) +O(Q cosβ∆/ρ3) +O(∆2/ρ3)

+O(Q cosβ∆3/ρ5) + +O(∆4/ρ5) ,

(3.39d)F S
(µ),0 = O(Q cosβ/ρ) +O(∆/ρ) +O(Q cosβ∆2/ρ3) +O(∆3/ρ3)

+O(Q cosβ∆4/ρ5) +O(∆5/ρ5) +O(Q cosβ∆6/ρ7) +O(∆7/ρ7) ,

and

(3.39e)
F S

(µ),+1 = O(ρ) +O(Q cosβ∆/ρ) +O(∆2/ρ) +O(Q cosβ∆3/ρ3) +O(∆4/ρ3)

+O(Q cosβ∆5/ρ5) +O(∆6/ρ5) +O(Q cosβ∆7/ρ7)

+O(∆8/ρ7) +O(Q cosβ∆9/ρ9) +O(∆10/ρ9) ,

where O( ) stands for terms that involve only a particular combination of ∆, ρ, and
Q, cos β, sin β with coefficients that might depend on χ, r0, ṙ0, E, J etc. Using the
rules listed in section 3.6 we eliminate all but a handful of terms

(3.40a)F S
(µ),−2 = O(∆/ρ3) ,

(3.40b)F S
(µ),−1 = O(1/ρ) ,

and
(3.40c)F S

(µ),+1 = O(ρ) .

As for the scalar case there is no F S
(µ)(ν),0 term anymore. Using the results of Eq. (3.6),

Eq. (B.5) and (B.2) we obtain the multipole coefficients of the remaining terms and
after re-expanding the resulting hypergeometric functions in terms of the elliptic
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integrals of section (3.6) we obtain regularization parameters

A(0) =
ṙ

sign(∆)a2f
,

(3.41a)

B(0) =
2J2ṙ

r0a3πfE
E +

r0
a3fπEṙ

K ,

(3.41b)

D(0) =

[
r0(34r2

0J
2 + 11J4 + 15r4

0)Eṙ
3

4πa7f

+
(

192r9
0 + 876MJ8 + 48r0J

8 + 2114Mr4
0J

4 + 651J2r7
0 + 426J6r3

0

+ 2332J6Mr2
0 + 706Mr6

0J
2 + 861J4r5

0

)

Eṙ
/(

24πa5fr4
0J

2
)]

E

+

[

−r0(15r4
0 + 35r2

0J
2 + 12J4)Eṙ3

8πa7f
+

(

−192r7
0 − 555r5

0J
2 − 608Mr4

0J
2

− 579J4r3
0 − 1126Mr2

0J
4 − 204J6r0 − 542J6M

)

Eṙ
/(

24a5πfr2
0J

2
)]

K ,

(3.41c)

A(+) = − E

sign(∆)a2f
eiϕ0 ,

(3.41d)

B(+) =

{[

−i[(r
2
0 + 2J2)f + 2r2

0]ṙ

r2
0afπJ

− 2J2ṙ2

r0πfa3
+
r0 − 2M

ar2
0πf

]

E

+ (−i(2 − f)ṙ

afπJ
− r0ṙ

2

πfa3
+

2r0f + 4M − 2r0
ar2

0πf
)K

}

eiϕ0 ,

(3.41e)

and
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D(+) =

{[
i[(−38J4 + 15r4

0 − 31r2
0J

2)f − 16J4 − 30r4
0 − 62r2

0J
2]ṙ3

8Jfπa5

+ i
[

(−96r9
0 − 330J2r7

0 − 225Mr6
0J

2 − 480J4r5
0 − 624Mr4

0J
4 − 261J6r3

0

−723J6Mr2
0−24r0J

8−306MJ8)f−2r2
0J

2(27r5
0+31Mr4

0 +30r3
0J

2+113Mr2
0J

2

− 6J4r0 + 100MJ4)
]

ṙ
/(

12a3r5
0fπJ

3
)

− r0(34r2
0J

2 + 11J4 + 15r4
0)ṙ

4

4a7πf

+
[

18r3
0J

2a2(5r2
0 + 4J2)f − 218Mr6

0J
2 − 498J4r5

0 − 96r9
0 − 393J2r7

0

− 1214J6Mr2
0 − 24r0J

8 − 946Mr4
0J

4 − 201J6r3
0 − 438MJ8

]

ṙ2
/(

12r4
0a

5πfJ2
)

+
[

−2r3
0a

2(27r3
0 +106Mr2

0 +36r0J
2 +88J2M)f+(−2M +r0)(81r7

0 −256Mr6
0

+ 195r5
0J

2 − 866Mr4
0J

2 + 120J4r3
0 − 886Mr2

0J
4 − 264J6M)

]/(

24a3πfr7
0

)]

E

+

[
i[(−15r4

0 + r2
0J

2 + 12J4)f + 24J4 + 62r2
0J

2 + 30r4
0]ṙ

3

8Jfπa5

+i
[

(192r7
0+564r5

0J
2+450Mr4

0J
2+633J4r3

0+890Mr2
0J

4+252J6r0+458J6M)f

+2J2(54r5
0+62Mr4

0+75r3
0J

2+56Mr2
0J

2+12J4r0+12MJ4)
]

ṙ
/(

24a3r3
0fπJ

3
)

+
r0(15r4

0 + 35r2
0J

2 + 12J4)ṙ4

8a7πf
+

[

−18r0J
2a2(5r2

0 + 4J2)f + 192r7
0 + 633r5

0J
2

+ 428Mr4
0J

2 + 669J4r3
0 + 922Mr2

0J
4 + 204J6r0 + 542J6M

]

ṙ2
/(

24r2
0a

5πfJ2
)

+
[

6r0a
2(11r3

0 + 68Mr2
0 − 4r0J

2 + 92J2M)f − (−2M + r0) (93r5
0 − 158Mr4

0

+ 138r3
0J

2 − 236Mr2
0J

2 + 48J4r0 − 84MJ4)
]/(

24a3πfr5
0

)]

K
}

eiϕ0 .

(3.41f)
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Chapter 4

Numerical method

In this chapter we describe the numerical methods we used to calculate the retarded
fields for the scalar and electromagnetic case. In this thesis we did not obtain numer-
ical results for the gravitational case, however the methods described here should be
applicable to the gravitational case as well.

4.1 Particle motion

Following Darwin [38] we introduce the dimensionless semi-latus rectum p and the
eccentricity e such that for a bound orbit around a Schwarzschild black hole of mass
M ,

(4.1)r1 =
pM

1 + e
, r2 =

pM

1 − e

are the radial positions of the periastron and apastron, respectively. Without loss
of generality, we confine the motion of the particle to the equatorial plane θ = π

2
.

Energy per unit mass and angular momentum per unit mass are then given by

(4.2)E2 =
(p− 2 − 2e)(p− 2 + 2e)

p (p− 3 − e2)
, J2 =

p2M2

p− 3 − e2
,

which are linked to the components of uα as ut = −E, uφ = J . Together with
these definitions it is useful to introduce an orbital parameter χ such that along the
trajectory of the particle,

(4.3)r(χ) =
pM

1 + e cosχ
,
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where χ is single-valued along the orbit. We can then write down first-order differ-
ential equations for χ(t) and the azimuthal angle ϕ(t) of the particle,

(4.4a)
dχ

dt
=

(p− 2 − 2e cosχ)(1 + e cosχ)2

(Mp2)

√

p− 6 − 2e cosχ

(p− 2 − 2e)(p− 2 + 2e)
,

(4.4b)
dϕ

dt
=

(p− 2 − 2e cosχ)(1 + e cosχ)2

p3/2M
√

(p− 2 − 2e)(p− 2 + 2e)
,

which are equivalent to the geodesic equation

(4.5)uβ∇βu
α = 0 .

We use the embedded Runge-Kutta-Fehlberg (4, 5) algorithm provided by the GNU

Scientific Library routine gsl odeiv step rkf45 and an adaptive step-size con-
trol to evolve the position of the particle forward in time. Intermediate values of the
particle’s position are found using a Hermite interpolation of the nearest available
calculated positions.

Below, quantities bearing a subscript “0” (for example f0 = 1 − 2M/r0) are
evaluated at the particle’s position; they are functions of τ only.

4.2 Scalar field

Our task is to numerically solve the scalar wave equation Eq. (2.44)

gαβ∇α∇βΦ(x) = −4πρ(x) ,

with a source term

ρ(x) = q

∫

γ

δ4(x, z) dτ .

For numerical purposes it is convenient to define ψℓm by

(4.6)Φ(x) =

∞∑

ℓ=0

ℓ∑

m=−ℓ

1

r
ψℓmY

ℓm ,

where Yℓm are the usual scalar spherical harmonics. After substituting in Eq. (2.44),
this yields a reduced wave equation for the multipole moments ψℓm:

(4.7)−∂2
t ψℓm + ∂2

r∗ψℓm − Vℓψℓm = −4πq
f0

r0E
Ȳℓm(π/2, ϕ0)δ(r

∗ − r∗0) ,

where

(4.8)Vℓ = f
(2M

r3
+
ℓ (ℓ+ 1)

r2

)

,

and an overbar denotes complex conjugation.

52



CHAPTER 4. NUMERICAL METHOD

In order to numerically solve Eq. (4.7) we use the fourth-order finite difference
scheme introduced by Lousto [5], with some modifications to suit our needs. We
choose to implement a fourth-order convergent code because the accuracy obtained
with a second order scheme, while much easier to achieve, is inadequate for precision
determination of the self-force.

From now on, we will suppress the subscripts ℓ and m on Vℓ and ψℓm for conve-
nience of notation.

Inspecting Eq. (4.7) we see that the wave equation consists of three parts: the
wave-operator term (∂2

r∗ −∂2
t )ψ and the potential term V ψ on the left-hand side, and

the source term on the right-hand side of the equation. Of these, the wave operator
turns out to be easiest to handle, and the source term does not create a substantial
difficulty. The term involving the potential V turns out to be the most difficult one
to handle.

Following Lousto we introduce a staggered grid with step sizes ∆t = 1
2
∆r∗ ≡ h,

which follows the characteristic lines of the wave operator in Schwarzschild spacetime;
see Fig. 4.1 for a sketch of a typical grid cell. The basic idea behind the method is to
integrate the wave equation over a unit cell of the grid, which nicely deals with the
Dirac-δ source term on the right-hand side. To this end, we introduce the Eddington-
Finkelstein null coordinates v = t + r∗ and u = t − r∗ and use them as integration
variables.

4.2.1 Differential operator

Rewriting the wave operator in terms of u and v, we find −∂2
t + ∂2

r∗ = −4∂u∂v, which
allows us to evaluate the integral involving the wave operator exactly. We find

(4.9)
x

cell

−4∂u∂vψ du dv = −4[ψ(t+h, r∗)+ψ(t−h, r∗)−ψ(t, r∗−h)−ψ(t, r∗ +h)] .

4.2.2 Source term

If we integrate over a cell traversed by the particle, then the source term on the right-
hand side of the equation will have a non-zero contribution. Writing the source term
as G(t, r∗)δ(r∗ − r∗0(t)) with

(4.10)G(t, r∗) = −4πq
f

Er
Ȳℓm(π/2, ϕ0) ,

we find

(4.11)
x

cell

Gδ(r∗ − r∗0(t)) du dv = −8πq

E

∫ t2

t1

f0(t)

r0(t)
Ȳℓm(π/2, ϕ0(t)) dt ,

where t1 and t2 are the times at which the particle enters and leaves the cell, respec-
tively. While we do not have an analytic expression for the trajectory of the particle
(except when the particle follows a circular orbit), we can numerically integrate the
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first-order ordinary differential equations that govern the particle’s motion to a pre-
cision that is much higher than that of the partial differential equation governing ψ.
In this sense we treat the integral over the source term as exact. To evaluate the
integral we adopt a four-point Gauss-Legendre scheme, which has an error of order
h8.

4.2.3 Potential term

The most problematic term—from the point of view of implementing an approxima-
tion of sufficiently high order in h—turns out to be the term V ψ in Eq. (4.7). Since
this term does not contain a δ-function, we have to approximate the double integral

(4.12)
x

cell

V ψ du dv

up to terms of order h6 for a generic cell in order to achieve an overall O(h4) conver-
gence of the scheme.

Here we have to treat cells traversed by the particle (“sourced” cells) differently
from the generic (“vacuum”) cells. While much of the algorithm can be transferred
from the vacuum cells to the sourced cells, some modifications are required. We will
describe each case separately in the following subsections.

Vacuum case

To implement Lousto’s scheme to evolve the field across the vacuum cells, we use a
double Simpson rule to compute the integral Eq. (4.12). We introduce the notation

(4.13)g(t, r∗) = V (r∗)ψ(t, r∗)

and label our points in the same manner (see Fig. 4.1) as in [5]:

(4.14)
x

cell

g du dv =
(h

3

)2

[g1 + g2 + g3 + g4 +4(g12 + g24 + g34 + g13)+ 16g0] +O(h6).

Here, for example, g1 is the value of g at the grid point labelled 1, and g12 is the
value of g at the off-grid point labelled 12, etc. Deviating from Lousto’s scheme, we
choose to calculate g0 using an expression different from that derived in [5]. Unlike
Lousto’s approach, our expression exclusively involves points that are within the past
light cone of the current cell. We find

(4.15)g0 =
1

16
[8V4 ψ4 + 8V1 ψ1 + 8V2 ψ2 − 4V6 ψ6 − 4V5 ψ5

+ V10 ψ10 + V7 ψ7 − V9 ψ9 − V8 ψ8 ] +O(h4) .

In order to evaluate the term in parentheses in Eq. (4.14), we again use a variant
of the equations given in [5]. Lousto’s equations (33) and (34),

(4.16a)g13 + g12 = V (r∗0 − h/2) (ψ1 + ψ0)
[

1 − 1

2

(h

2

)2

V (r∗0 − h/2)
]

+O(h4) ,

(4.16b)g24 + g34 = V (r∗0 + h/2) (ψ0 + ψ4)
[

1 − 1

2

(h

2

)2

V (r∗0 + h/2)
]

+O(h4)
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t0 − h

t0

t0 + h

t0 − 2h

r∗0r∗0 − 2h r∗0 + 2h
r∗0 − 3h r∗0 + 3hr∗0 + hr∗0 − h

2

3

4

2412

13 34

0
1

87 9 10

5 6

Figure 4.1: Points used to calculate the integral over the potential term for vacuum
cells. Grid points are indicated by blue circles while red cross-hairs indicate points
in between two grid points. We calculate field values at points that do not lie on the
grid by employing the second-order finite-difference scheme described in [5].

contain isolated occurrences of ψ0, the value of the field at the central point. Since
Eq. (4.15) only allows us to find g0 = V0ψ0, finding ψ0 would involve a division by
V0, which will be numerically unstable very close to the event horizon where V0 ≈ 0.
Instead we choose to express the potential term appearing in the square brackets as
a Taylor series around r∗0. This allows us to eliminate the isolated occurrences of ψ0,
and we find

g13 + g12 + g24 + g34 = 2V (r∗0)ψ0

[

1 − 1

2

(h

2

)2

V (r∗0)
]

+ V (r∗0 − h/2)ψ1

[

1 − 1

2

(h

2

)2

V (r∗0 − h/2)
]

+ V (r∗0 + h/2)ψ4

[

1 − 1

2

(h

2

)2

V (r∗0 + h/2)
]

+
1

2
[V (r∗0 − h/2) − 2V (r∗0) + V (r∗0 + h/2)] (ψ1 + ψ4) +O(h4) .

(4.17)

Because of the (h
3
)2 factor in Eq. (4.14), this allows us to reach the required O(h6)

convergence for a generic vacuum cell. This—given that there is a number of order
N = 1/h2 of such cells—yields the desired overall O(h4) convergence of the full
algorithm, at the end of the N steps required to finish the simulation.

Sourced cells

For vacuum cells, the algorithm described above is the complete algorithm used to
evolve the field forward in time. For cells traversed by the particle, however, we have
to reconsider the assumptions used in deriving Eqs. (4.15) and (4.17). When deriv-
ing Eq. (4.17) we have employed the second-order evolution finite-difference scheme
(see [5]), in which the single step equation

(4.18)ψ3 = −ψ2 +
(

1 − h2

2
V0

)

(ψ1 + ψ4)
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is accurate only to O(h3) for cells traversed by the particle. For these cells, therefore,
the error term in Eq. (4.17) is O(h3) instead of O(h4). As there is a number of order
N ′ = 1/h of cells that are traversed by the particle in a simulation run, the overall
error—after including the (h

3
)2 factor in Eq. (4.14)—is of order h4. We can therefore

afford this reduction of the convergence order in Eq. (4.17)
Equation (4.15), however, is accurate only to O(h) for cells traversed by the parti-

cle. Again taking the (h
3
)2 factor into account, this renders the overall scheme O(h2).

Figure 4.2 shows the cells affected by the particle’s traversal and the reduced order

O(h3)O(h4)O(h5) O(h5)O(h4)traje
tory t0 + h

t0

t0 − h

t0 − 2h

r
∗0

r
∗0

+
2
h

r
∗0

+
4
h

r
∗0
−

4
h

r
∗0
−

2
h

r
∗0
−

3
h

r
∗0
−
h

r
∗0

+
h

r
∗0

+
3
h

Figure 4.2: Cells affected by the passage of the particle, showing the reduced order
of the single step equation

of the single step equation for each cell. Cells whose convergence order is O(h5) or
higher do not need modifications, since there is only a number N ′ = 1/h of such cells
in the simulation. We are therefore concerned about cells neighbouring the particle’s
trajectory and those traversed by the particle.

Cells neighbouring the particle These cells are not traversed by the particle,
but the particle might have traversed cells in their past light-cone, which are used in
the calculation of g0 in Eq. (4.15). For these cells, we use a one-dimensional Taylor
expansion of g(t, r∗) within the current time-slice t = t0,

(4.19)g0 =
1

16
[5V (r∗0 − h)ψ(t0, r

∗
0 − h) + 15V (r∗0 − 3h)ψ(t0, r

∗
0 − 3h)

− 5V (r∗0 − 5h)ψ(t0, r
∗
0 − 5h) + V (r∗0 − 7h)ψ(t0, r

∗
0 − 7h)] +O(h4)

for the cell on the left-hand side, and

(4.20)g0 =
1

16
[5V (r∗0 + h)ψ(t0, r

∗
0 + h) + 15V (r∗0 + 3h)ψ(t0, r

∗
0 + 3h)

− 5V (r∗0 + 5h)ψ(t0, r
∗
0 + 5h) + V (r∗0 + 7h)ψ(t0, r

∗
0 + 7h)] +O(h4)

for the cell on the right-hand side, where (t0, r
∗
0) is the centre of the cell traversed by

the particle. Both of these are more accurate than is strictly necessary; we would need
error terms of order h3 to achieve the desired overall O(h4) convergence of the scheme.
Keeping the extra terms, however, improves the numerical convergence slightly.
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Cells traversed by the particle We choose not to implement a fully explicit
algorithm to handle cells traversed by the particle, because this would increase the
complexity of the algorithm by a significant factor. Instead we use an iterative ap-
proach to evolve the field using the integrated wave equation

(4.21)−4(ψ3 +ψ2 −ψ1 −ψ4)−
x

cell

V ψ du dv = −8πq

E

∫ t2

t1

f0(t)

r0(t)
Ȳℓm(π/2, ϕ0(t)) dt .

In this equation the integral involving the source term can be evaluated to any desired
accuracy at the beginning of the iteration, because the motion of the particle is
determined by a simple system of ordinary differential equations, which are easily
integrated with reliable numerical methods. It remains to evaluate the integral over
the potential term, which we do iteratively. Schematically the method works as
follows:� Make an initial guess for ψ3 using the second-order finite-difference scheme.

This guess is correct up to terms of O(h3).� Match a second-order piecewise interpolation polynomial to the six points that
make up the past light-cone of the future grid point, including the future point
itself.

t0 − h

t0

t0 + h

r∗0 r∗0 + 2hr∗0 − 2h r∗0 − h r∗0 + h

(1)

(4)

(3a) (3b)

(2a) (2b)

t2

t1

Figure 4.3: Typical cell traversal of the particle. We split the domain into sub-parts
indicated by the dotted line based on the time the particle enters (at t1) and leaves (at
t2) the cell. The integral over each sub-part is evaluated using an iterated two-by-two
point Gauss-Legendre rule.� Use this approximation for ψ to numerically calculate

x

cell

V ψ du dv ,

using two-by-two point Gauss-Legendre rules for the six sub-parts indicated in
Fig. 4.3.� Update the future value of the field and repeat the process until the iteration
has converged to a required degree of accuracy.
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4.2.4 Initial values and boundary conditions

As is typical for numerical simulations, we have to pay careful attention to specifying
initial data and appropriate boundary conditions. These aspects of the numerical
method are highly non-trivial problems in full numerical relativity, but they can be
solved or circumvented with moderate effort in the present work.

Initial data

in
ne

r

bo
un

da
ry

t

r∗

u
=
u0

v
=
v
0

trajectory

Figure 4.4: Numerical domain evolved during the simulation. We impose an inner
boundary condition close to the black whole where we can implement it easily to the
accuracy of the underlying floating point format. Far away from the black hole, we
evolve the full domain of dependence of the initial data domain without imposing
boundary conditions.

In this work we use a characteristic grid consisting of points lying on characteristic
lines of the wave operator to evolve ψ forward in time. As such, we need to specify
characteristic initial data on the lines u = u0 and v = v0 shown in Fig. 4.4. We choose
not to worry about specifying “correct” initial data, but instead arbitrarily choose ψ
to vanish on u = u0 and v = v0:

(4.22)ψ(u = u0, v) = ψ(u, v = v0) = 0 .

This is equivalent to adding spurious initial waves in the form of a homogeneous
solution of Eq. (4.7) to the correct solution. This produces an initial wave burst that
moves away from the particle with the speed of light, and quickly leaves the numerical
domain. Any remaining tails of the spurious initial data decay as t−(2ℓ+2) as shown
in [39] and become negligible after a short time. We conclude that the influence of
the initial-wave content on the self-force becomes negligible after a time of the order
of the light-crossing time of the particle’s orbit.

Boundary conditions

On the analytical side we would like to impose ingoing boundary conditions at the
event horizon r∗ → −∞ and outgoing boundary conditions at spatial infinity r∗ → ∞,
ie.

(4.23)lim
r∗→−∞

∂uψ = 0 , lim
r∗→∞

∂vψ = 0 .
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Because of the finite resources available to a computer we can only simulate a finite
region of the spacetime, and are faced with the reality of implementing boundary
conditions at finite values of r∗. Two solutions to this problem present themselves:

1. choose the numerical domain to be the domain of dependence of the initial data
surface. Since the effect of the boundary condition can only propagate forward
in time with at most the speed of light, this effectively hides any influence of
the boundary. This is what we choose to do in order to deal with the outer
boundary condition.

2. implement boundary conditions sufficiently “far out” so that numerically there
is no difference between imposing the boundary condition there or at infinity.
Since the boundary conditions depend on the vanishing of the potential V (r)
appearing in the wave equation, this will happen once 1− 2M/r ≈ 0. Near the
horizon r ≈ 2M(1+exp(r∗/2M)), so this will happen—to numerical accuracy—
for modestly large (negative) values of r∗ ≈ −73M . We choose to implement
the ingoing waves condition ∂uψℓm = 0 or

(4.24)ψ(t+ h, r∗) = ψ(t, r∗ − h)

here.

4.2.5 Implementation

Putting the results described in the preceding sections together we arrive at explicit
evolution equations to evolve ψ from one time slice to the next one.

Vacuum cells

Cells not traversed by the particle are evolved using Eqs. (4.9), (4.14) – (4.17). Ex-
plicitly written out, we use

(4.25)

ψ3 = −ψ2 +

[

1 − 1

4

(h

3

)2

(V0 + V1) +
1

16

(h

3

)4

V0 (V0 + V1)

]

ψ1

+

[

1 − 1

4

(h

3

)2

(V0 + V4) +
1

16

(h

3

)4

V0 (V0 + V4)

]

ψ4

−
[

1 − 1

4

(h

3

)2

V0

](h

3

)2

(g12 + g24 + g34 + g13 + 4g0) ,

where g0 is given by Eq. (4.15) and the sum g12 +g24 +g34 +g13 is given by Eq. (4.17).

Cells next to the particle

Vacuum cells close to the current position of the particle require a different approach
to calculate g0, since the cells in their past light cone could have been traversed by
the particle. We use Eqs. (4.19) and (4.20) to find g0 in this case. Other than this
modification, the same algorithm as for generic vacuum cells is used.
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Cells traversed by the particle

We evolve cells traversed by the particle using the iterative algorithm described in
Sec. 4.2.3. Here

(4.26)ψ3 = −ψ1 + ψ2 + ψ4 −
1

4

x

cell

V ψ du dv +
2πq

E

∫ t2

t1

f0(t)

r0(t)
Ȳℓm(π/2, π0(t)) dt ,

where the initial guess for the iterative evolution of
s

cell
V ψ du dv is obtained using

the second order finite-difference scheme of Lousto and Price [4],

(4.27)ψ3 = −ψ1 +
[

1 − h2

2
V0

]

[ψ2 + ψ4] +
2πq

E

∫ t2

t1

f0(t)

r0(t)
Ȳℓm(π/2, π0(t)) dt .

Successive iterations use a four-point Gauss-Legendre rule to evaluate the integral of
V ψ; this requires a second-order polynomial interpolation of the current field values
as described in Appendix D.1.

4.2.6 Extraction of the field data at the particle

In order to extract the value of the field and its first derivatives at the position of
the particle, we again use a polynomial interpolation at the points surrounding the
particle’s position. Using a fourth-order polynomial, as described in Appendix D.1,
we can estimate ψ, ∂tψt, and ∂r∗ψ at the position of the particle up to errors of order
h4. The O(h4) accuracy we achieve by using a fourth-order piecewise polynomial
shows up clearly in a regression plot such as Fig. 4.7.

4.2.7 Numerical tests

In this section we present the tests we have performed to validate our numerical
evolution code. In order to check the fourth-order convergence rate of the code, we
perform regression runs with increasing resolution for both a vacuum test case, where
we seeded the evolution with a Gaussian wave packet, and a case where a particle is
present.

Convergence tests: Vacuum

As a first test of the validity of our numerical code we estimate the convergence order
by removing the particle and performing regression runs for several resolutions. We
use a Gaussian wave packet as initial data,

(4.28a)ψ(u = u0, v) = exp(−[v − vp]
2/[2σ2]) ,

(4.28b)ψ(u, v = v0) = 0 ,

where vp = 75M and σ = 10M , v0 = −u0 = 6M + 2M ln 2, and we extract the
field values at r∗ = 20M . Several such runs were performed, with varying resolution
of 2, 4, 8, 16, and 32 grid points per M . Figure 4.5 shows ψ(2h) − ψ(h) rescaled by
appropriate powers of 2, so that in the case of fourth-order convergence the curves
would lie on top of each other. As can be seen from the plots, they do, and the
vacuum portion of the code is indeed fourth-order convergent.
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Figure 4.5: Convergence test of the numerical algorithm in the vacuum case. We show
differences between simulations using different step sizes h = 0.5M (ψ2), h = 0.25M
(ψ4), h = 0.125M (ψ8), h = 0.0625M (ψ16), and h = 0.03125M (ψ32). Displayed are
the rescaled differences δ4−2 = ψ4 − ψ2, δ8−4 = 24(ψ8 − ψ4), δ16−8 = 44(ψ8 − ψ4), and
δ32−16 = 84(ψ8 − ψ4) for the real part of the ℓ = 2, m = 2 mode at r∗ ≈ 20M . The
maximum value of the field itself is of the order of 0.1, so that the errors in the field
values are roughly five orders of magnitude smaller than the field values themselves.
We can see that the convergence is in fact of fourth-order, as the curves lie nearly on
top of each other, with only the lowest resolution curve δ4−2 deviating slightly.

Convergence tests: Particle

While the convergence test described in section 4.2.7 clearly shows that the desired
convergence is achieved for vacuum evolution, it does not test the parts of the code
that are used in the integration of the inhomogeneous wave equation. To test these
we perform a second set of regression runs, this time using a non-zero charge q. We
extract the field at the position of the particle, thus also testing the implementation of
the extraction algorithm described in section 4.2.6. For this test we choose the ℓ = 6,
m = 4 mode of the field generated by a particle on a mildly eccentric geodesic orbit
with p = 7, e = 0.3. As shown in Fig. 4.6 the convergence is still of fourth order, but
the two curves no longer lie precisely on top of each other at all times. The region
before t ≈ 100M is dominated by the initial wave burst and therefore does not scale
as expected, yielding two very different curves. In the region 300M . t . 400M
the two curves lie on top of each other, as expected for a fourth-order convergent
finite-difference scheme. In the region between t ≈ 200M and t ≈ 300M , however,
the dashed curves have slightly smaller amplitudes than the solid one, indicating an
order of convergence different from (but close to) four.

To explain this behaviour we have to examine the terms that contribute signif-
icantly to the error in the simulation. The numerical error is almost completely
dominated by that of the approximation of the potential term

s
cell
V ψ du dv in the

integrated wave equation. For vacuum cells the error in this approximation scales as
h6, where h is the step size. For cells traversed by the particle, on the other hand,
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Figure 4.6: Convergence test of the numerical algorithm in the sourced case. We
show differences between simulations using different step sizes of 4 (ψ4), 8 (ψ8), 16
(ψ16), and 32 (ψ32) cells per M . Displayed are the rescaled differences δ8−4 = ψ8−ψ4,
etc. (see caption of Fig. 4.5 for definitions) of the field values at the position of the
particle for a simulation with ℓ = 6, m = 4 and p = 7, e = 0.3. We see that the
convergence is approximately fourth-order.
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Figure 4.7: Convergence test of the numerical algorithm in the sourced case. We
show differences between ∂rΦ for simulations using different step sizes of 4 (Φr,4), 8
(Φr,8), 16 (Φr,16), and 32 (Φr,32) cells per M . Displayed are the rescaled differences
δ8−4 = Φr,8 − Φr,4 etc. of the values at the position of the particle for a simulation
with ℓ = 6, m = 4 and p = 7, e = 0.3. Although there is much noise caused by the
piecewise polynomials used to extract the data, we can see that the convergence is
approximately fourth-order.
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the approximation error depends also on the difference t2 − t1 of the times at which
the particle enters and leaves the cell. This difference is bounded by h but does not
necessarily scale as h. For example, if a particle enters a cell at its very left, then
scaling h by 1

2
would not change t2 − t1 at all, thus leading to a scaling behaviour

that differs from expectation.
To investigate this further we conducted test runs of the simulation for a particle

on a circular orbit at r = 6M . In order to observe the expected scaling behaviour,
we have to make sure that the particle passes through the tips of the cell it traverses.
When this is the case, then t2 − t1 ≡ h and a plot similar to the one shown in
Fig. 4.6 shows the proper scaling behaviour. As a further test we artificially reduced
the convergence order of the vacuum scheme to two by implementing the second-
order scheme described in [5]. By keeping the algorithm that deals with sourced cells
unchanged, we reduced the relative impact on the numerical error. This, too, allows
us to recover the expected (second-order) convergence. Figures 4.8 and 4.9 illustrate
the effects of the measures taken to control the convergence behaviour.
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Figure 4.8: Behaviour of convergence tests for a particle in circular orbit at r = 6M .
We show differences between simulations of the ℓ = 2, m = 2 multipole moment using
different step sizes of 2 (ψ2), 4 (ψ4), 8 (ψ8), 16 (ψ16), 32 (ψ32) and 64 (ψ64) cells per
M . Displayed are the real part of the rescaled differences δ4−2 = (ψ4 −ψ2) etc. of the
field values at the position of the particle, defined as in Fig. 4.5. The values have been
rescaled so that—for fourth order convergence—the curves should all coincide. The
upper panel corresponds to a set of simulations where the particle traverses the cells
away from their tips. The curves do not coincide perfectly with each other, seemingly
indicating a failure of the convergence. The lower panel was obtained in a simulation
where the particle was carefully positioned so as to pass through the tips of each cell
it traverses. This set of simulations passes the convergence test more convincingly.
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Figure 4.9: Behaviour of convergence tests for a particle in circular orbit at r = 6M .
We show differences between simulations of the ℓ = 2, m = 2 multipole moment
using different step sizes of 8 (ψ8), 16 (ψ16), 32 (ψ32), and 64 (ψ64) cells per M .
Displayed are the real part of the rescaled differences δ16−8 = ψ16−ψ8 etc. of the field
values at the position of the particle, defined as in Fig. 4.5. The values have been
rescaled so that—for second order convergence—the curves should all coincide. The
upper two panels correspond to simulations where the second order finite-difference
scheme was used throughout. For the topmost one, care was taken to ensure that the
particle passes through the tip of each cell it traverses, while in the middle one no
such precaution was taken. Clearly the curves in the middle panel do not coincide
with each other, indicating a failure of the second-order convergence of the code. The
lower panel was obtained in a simulation using the mixed-order algorithm described
in the text. While the curves still do not coincide precisely, the observed behaviour
is much closer to the expected one than for the purely second order finite-difference
scheme.
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4.3 Electromagnetic field: Faraday tensor method

Our task is to numerically solve the Maxwell equations

(4.29a)gβγ∇γFαβ(x) = 4πjα(x) ,

(4.29b)∇[γFαβ](x) = 0 ,

(4.29c)jα(x) = q

∫

γ

uα(τ)δ4(x, z(τ)) dτ .

We use vector spherical harmonics Zℓm
A = ∂AY

ℓm and Xℓm
A = ǫ B

A ∂BY
ℓm as in-

troduced in [40] and decompose the vector potential Aα and the current density jα
as

(4.30a)Aa(t, r, θ, φ) = Aℓma (t, r)Yℓm(θ, φ) ,

(4.30b)ja(t, r, θ, φ) = jℓma (t, r)Yℓm(θ, φ) for a = t, r ,

(4.30c)AA(t, r, θ, φ) = vℓm(t, r)Zℓm
A (θ, φ) + ṽℓm(t, r)Xℓm

A (θ, φ) ,

(4.30d)jA(t, r, θ, φ) = jeven
ℓm (t, r)Zℓm

A (θ, φ) + jodd
ℓm (t, r)Xℓm

A (θ, φ) for A = θ, φ ,

where a summation over ℓ and m is implied. Substituting these into Eq. (2.53) we
arrive at two decoupled sets of equations for the even (Aℓma , vℓm) and odd (ṽℓm) modes

(4.31a)−f ∂
2Aℓmt
∂r2

+ f
∂2Aℓmr
∂t∂r

− 2f

r

∂Aℓmt
∂r

+
2f

r

∂Aℓmr
∂t

− ℓ(ℓ+ 1)

r2

∂vℓm

∂t
+
ℓ(ℓ+ 1)

r2
Aℓmt

= 4πjℓmt ,

(4.31b)f−1∂
2Aℓmr
∂t2

− f−1∂
2Aℓmt
∂t∂r

− ℓ(ℓ+ 1)

r2

∂vℓm

∂r
+
ℓ(ℓ+ 1)

r2
Aℓmr = 4πjℓmr ,

(4.31c)−f ∂
2vℓm

∂t2
+f−1∂

2vℓm

∂t2
− 2M

r2

∂vℓm

∂r
+f

∂Aℓmr
∂r

−f−1∂A
ℓm
t

∂t
+

2M

r2
ṽℓm = 4πjeven

ℓm ,

(4.31d)−f ∂
2ṽℓm

∂t2
+ f−1∂

2ṽℓm

∂t2
− 2M

r2

∂ṽℓm

∂r
+
ℓ(ℓ+ 1)

r2
ṽℓm = 4πjodd

ℓm ,

where

(4.32a)jℓmt = −qf
r2
0

Ȳ ℓm(
π

2
, ϕ0)δ(r − r0) ,

(4.32b)jℓmr =
qṙ0
Er2

0

Ȳ ℓm(
π

2
, ϕ0)δ(r − r0) ,

(4.32c)jeven
ℓm = − imqfJ

ℓ(ℓ + 1)Er2
0

Ȳ ℓm(
π

2
, ϕ0)δ(r − r0) ,

(4.32d)jodd
ℓm = − qfJ

ℓ(ℓ + 1)Er2
0

∂θȲ
ℓm(

π

2
, ϕ0)δ(r − r0) .

In the equations above an overbar denotes complex conjugation, an overdot denotes
differentiation with respect to τ .
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The three even mode equations Eq. (4.31a) – Eq. (4.31c) are not yet amenable
to a numerical treatment, as they are highly coupled. In order to obtain a more
convenient set of equation we define the auxiliary fields

(4.33a)ψℓm ≡ −r2

(
∂Aℓmt
∂r

− ∂Aℓmr
∂t

)

,

(4.33b)χℓm ≡ f

(

Aℓmr − ∂vℓm

∂r

)

,

(4.33c)ξℓm ≡ Aℓmt − ∂vℓm

∂t
,

which, up to the scaling factors, are just the tr, rφ and tφ components of the Faraday
tensor

(4.34a)Ftr =
∑

ℓ,m

ψℓm

r2
Y ℓm ,

(4.34b)FtA =
∑

ℓ,m

(−ξℓmZℓm
A + ṽℓm,t Xℓm

A ) ,

(4.34c)FrA =
∑

ℓ,m

(
χℓm

f
Zℓm
A + ṽℓm,r Xℓm

A ) ,

(4.34d)

Fθφ =
∑

ℓ,m

ṽℓm (Xℓm
φ,θ −Xℓm

θ,φ)

= −
∑

ℓ,m

ℓ(ℓ+ 1)ṽℓm sin(θ)Y ℓm .

Importantly, the relations in Eq. (4.33) can be arithmetically inverted to yield the
Faraday tensor components appearing in Eq. (2.133)

(4.35a)Aℓ
′m′

r,t −Aℓ
′m′

t,r =
ψℓm

r2
,

(4.35b)∂tv
ℓ′m′ −Aℓ

′m′

t = −ξℓm ,

and

(4.35c)∂rv
ℓ′m′ −Aℓ

′m′

r = −χ
ℓm

f
,

We then form linear combinations of derivatives of Eqs.(4.31a) – (4.31c). We use
[∂r(r

2(4.31b)) − ∂t(r
2(4.31a))] for ψℓm and find

(4.36a)
∂2ψℓm

∂r∗2
− ∂2ψℓm

∂t2
− ℓ(ℓ+ 1)

r3
ψℓm = S[ψ] ,

(4.36b)S[ψ] = 4πf
[∂r2jℓmt

∂r
− ∂r2jℓmr

∂t

]

.
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Similarly we use [f(4.31b) − ∂r(f(4.31c))] for χ and [(4.31a) − ∂t(4.31c)] for ξ. We
find

(4.37a)
∂2χℓm

∂r∗2
− ∂2χℓm

∂t2
− ℓ(ℓ+ 1)(r − 2M)

r3
χℓm = S[χ] ,

(4.37b)S[χ] = 4πf
[∂fjeven

ℓm

∂r
− fjℓmr

]

,

(4.37a)
∂2ξℓm

∂r∗2
− ∂2ξℓm

∂t2
− ℓ(ℓ+ 1)(r − 2M)

r3
ξℓm − 2(r − 3M)(r − 2M)

r5
ψℓm = S[ξ] ,

(4.37b)S[ξ] = 4πf
[∂fjeven

ℓm

∂t
− fjℓmt

]

.

Eqs. (4.36) – (4.37a) are still partially coupled, however the coupling is in the form of
a staggering, which allows us to first solve for ψℓm and use this result in the calculation
of ξℓm. On the other hand, the source terms appearing on the right hand side contain
derivatives of δ resulting in fields that are discontinuous at the location of the particle.
Lousto’s scheme is designed to cope with precisely this situation.

We note that the three fields ψℓm, χℓm and ξℓm are not independent of each other;
in fact knowledge of ψℓm is sufficient to reconstruct χℓm and ξℓm. Eq. (4.31a) can be
rearranged to yield

(4.39a)ξℓm = − f

ℓ(ℓ+ 1)

∂ψℓm

∂r
− 4π

ℓ(ℓ+ 1)
jℓmt ,

and similarly from Eq. (4.31b)

(4.39b)χℓm = − 1

ℓ(ℓ+ 1)

∂ψℓm

∂t
− 4πf

ℓ(ℓ+ 1)
jℓmr ,

showing that knowledge of ψℓm is sufficient to reconstruct the even multipole compo-
nents of the Faraday tensor. In this work, however, we choose to solve for χℓm and ξℓm

directly, rather than numerically differentiate ψℓm to obtain them. The gain in speed
by reducing the number of equations does not seem to offset the additional time
required to calculate ψℓm accurately enough to obtain good approximations for its
derivatives at the location of the particle. In this approach Eqs. (4.39a) and (4.39b)
are treated as constraints that the dynamical variables have to satisfy.

Finally we derive explicit expressions for the source terms S[·] on the right hand
sides of the field equations

(4.40a)S[·] = G[·](t)f0δ(r − r0) + F[·](t)fδ
′(r − r0) ,

(4.40b)G[ψ](t) = −4πq

E2
f0

(

r̈0 −
imṙ0J

r2
0

)

Ȳℓm(
π

2
, ϕ0) ,

(4.40c)F[ψ](t) = 4πqf0

(
ṙ2
0

E2
− 1

)

Ȳℓm(
π

2
, ϕ0) ,

(4.40d)G[χ](t) = −4πqṙ0
Er2

0

f0Ȳℓm(
π

2
, ϕ0) ,

(4.40e)F[χ](t) = − 4πqJim

Eℓ(ℓ + 1)r2
0

f 2
0 Ȳℓm(

π

2
, ϕ0) ,
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(4.40f)G[ξ](t) = −4πq

{
Jim

E2ℓ(ℓ+ 1)r2
0

[(
2M

r2
0

− 2f0

r0

)

ṙ0 −
imJ

r2
0

]

− 1

r2
0

}

f0Ȳℓm(
π

2
, ϕ0) ,

(4.40g)F[ξ](t) =
4πqJimṙ0
E2ℓ(ℓ+ 1)r2

0

f 2
0 Ȳℓm(

π

2
, ϕ0) .

We note that the coefficient functions G[·] and F[·] are independent of r (but do contain
terms in r0(t)), an observation we will later use to simplify Lousto’s expression for
the source terms.

4.3.1 Constraint equations

The full set of Maxwell equations consists of the inhomogeneous equations Eq. (4.29a)
as well as the homogeneous constraints Eq. (4.29b) which have to be satisfied by a
solution to Eq. (4.29a). Introducing a vector potential Aα implies that the constraints
are identically satisfied since they reduce to the Bianchi identities for the second
derivatives of Aα. When solving for the components of the Faraday tensor directly
there is no a priory guarantee that a solution to Eq. (4.36) – (4.37a), and (4.31d)
satisfies Eq. (4.29b). It turns out, however, that a decomposition into spherical
harmonics is sufficient to ensure that all but one of the constraints are identically
satisfied. The one that is not identically true is the trφ (or trθ) equation, which in
terms of ψℓm, χℓm and ξℓm reads

(4.41)
ψℓm

r2
− χℓm,t

f
+ ξℓm,r = 0 .

If the fields satisfy the sourced Maxwell equations Eqs. (4.31a), (4.31b), then Eq. (4.41)
is just the evolution equation for ψℓm. Thus Eq. (4.41) is valid whenever ψℓm satisfies
the consistency relations Eq. (4.39a) and (4.39b).

Analytically then, the situation is clear. Given a set of initial conditions for ψℓm,
χℓm and ξℓm which satisfy the sourced Maxwell equations initially, a solution to the
system of Eq. (4.36) – (4.37a), (4.31d) satisfies the sourced equations at all later
times. Given this, the homogeneous Maxwell equations are also satisfied at all times
and the reduced system is equivalent to the original set of Maxwell equations.

Numerically we monitor but do not enforce Eq. (4.39a) and (4.39b). Section 4.3.5
displays results for the constraint violations for our set of sample results.

Discretization—even sector

Lousto’s method is directly applicable to terms of the form −∂2ψ
∂t2

+ ∂2ψ
∂r∗2 , V (r)ψ (ie.

the wave operator and potential terms) on the left hand side of the equation and the
source terms Sα(t) on the right hand side. Here ψ is used as a placeholder for any
of ψℓm, χℓm or ξℓm; V (r) is an expression depending only on r and S(t) is one of the
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right hand side expressions in Eqs. (4.36) – (4.37a). We discretize these terms as

x

cell

du dv

(

−∂
2ψ

∂t2
+
∂2ψ

∂r∗2

)

= −4 [ψ3 + ψ2 − ψ1 − ψ4] ,

(4.42a)
x

cell

du dv V (r)ψ =

{

h2(ψ1 + ψ2 + ψ3 + ψ4)V0 +O(h4) vacuum cells

(A1ψ1 + A2ψ2 + A3ψ3 + A4ψ4)V0 +O(h3) sourced cells

(4.42b)

and

(4.43)

x

cell

du dv Sα(t) = 2

∫ t2

t1

G(t, r0(t)) dt± 2F (t1, r0(t1))

1 − 2M/r(t1)
[1 ∓ ṙ0(t1)/E]−1

± 2F (t2, r0(t2))

1 − 2M/r(t2)
[1 ± ṙ0(t2)/E]−1 ,

where u = t− r∗, v = t+ r∗ are null coordinates, ψ1,. . . ,ψ4 refer to values of the field
at the points labelled 1,. . . ,4 in Fig. 4.1, h = ∆t = ∆r∗/2 is the step size, V0 is the
value of the potential at the centre of the cell, A1,. . . ,A4 are the areas indicated in
Fig. 4.1 and t1 and t2 are the times at which the particle enters and leaves the cell,
respectively.

Discretization—odd sector

When written in terms of r∗, Eq. (4.31d), which governs the odd modes ṽℓm, reads

(4.44a)
∂2ṽℓm

∂r∗2
− ∂2ṽℓm

∂t2
− ℓ(ℓ+ 1)(r − 2M)

r3
ṽℓm = −4πfjℓmṽ ,

(4.44b)jℓmṽ = − qJ

ℓ(ℓ + 1)Er2
0

∂θȲ
ℓm(

π

2
, ϕ0)δ(r

∗ − r∗0) .

Eq. (4.44a) is of precisely the same form as the scalar wave equation discussed in
section 4.2. We re-use the fourth order numerical code described there with V =
ℓ(ℓ+1)(r−2M)

r3
, S = 4π qfJ

ℓ(ℓ+1)Er2
0

∂θȲ
ℓm(π

2
, ϕ0). This yields accurate results for ṽ and its

derivatives.

4.3.2 Initial values and boundary conditions

We follow the approach described in section 4.2.4 and do not specify physical initial
data or an outer boundary condition. We arbitrarily choose the fields to vanish on
the characteristic slices u = u0 and v = v0

(4.45)ψ(u = u0) = ψ(v = v0) = 0 ,

thereby adding a certain amount of spurious waves to the solution which show up as
an initial burst.
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We implement ingoing wave boundary conditions near the event horizon, suffi-
ciently close so that numerically r ≈ 2M , that is the potential terms in Eqs. (4.36)
– (4.37a) vanish. This happens at r∗ ≈ −73M and we implement the ingoing waves
condition ∂uψℓm = 0 there. Near the outer boundary this is not possible, since the po-
tential decays only slowly. Instead we choose to evolve the full domain of dependence
of the initial data surface there, hiding the effects of the boundary.

4.3.3 Extraction of the field data at the particle

We use a straightforward one-sided extrapolation of field values to the right of the
particle’s position to extract values for ψ and ∂r∗ψ. Specifically we fit a fourth order
polynomial

(4.46)p(x) =

4∑

n=0

ci
n!
xn ,

where x = r∗ = r∗0 to the five points to the right of the particle’s current position

and extract ψ and ∂r∗ψ as c0 and c1, respectively. In order to calculate
∂ψ(t0,r∗0)

∂t
we

follow [41] and calculate dψ(t,r∗(t))
dt

on the world line of the particle. Since this can be
calculated using either the field values on the world line

(4.47)
dψ(t, r∗(t))

dt
=
ψ(t+ h, r∗(t+ h))− ψ(t− h, r∗(t− h))

2h
+O(h2) ,

or as

(4.48)
dψ(t, r∗(t))

dt
=
∂ψ

∂t
+
∂ψ

∂r∗
dr∗0
dt

,

where both ∂ψ
∂r∗

and
dr∗

0

dt
= ṙ0

E
are known, this allows us to find

(4.49)
∂ψ

∂t
=

dψ(t, r∗(t))

dt
− ∂ψ

∂r∗
dr∗0
dt

.

We repeat this procedure to the left of the particle. As a check for the extrac-
tion procedure, we compare the difference between the right hand and left hand
values [ψ] = ψright − ψleft with the analytically calculated jump conditions of ap-

pendix D.2.1. Similarly we check that the numerical solution satisfies the first order
Maxwell equations Eq. (4.29a), (4.29b). In particular we check whether the numerical
solutions obtained for χ and ξ directly are consistent with Eqs. (4.39b) and (4.39a),
which give them in terms of derivatives of ψ.

4.3.4 Numerical tests

In this section we present the tests we performed to validate our numerical evolution
code. First, in order to check the second-order convergence rate of the code, we
perform regression runs with increasing resolution. As a second test, we compute the
regularized self-force for several different combinations of orbital elements p and e
and check that the multipole coefficients decay with ℓ as expected. This provides a
very sensitive check on the overall implementation of the numerical scheme as well as
the analytical calculations that lead to the regularization parameters.
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Convergence tests

We performed regression runs for our second-order convergent code using a non-
zero charge q and an eccentric orbit. We extract the field at the position of the
particle, thus also testing the implementation of the extraction algorithm described
in section 4.3.3. We choose the ℓ = 6, m = 4 mode of the field generated by a particle
on a mildly eccentric geodesic orbit with p = 7, e = 0.3. As shown in Fig. 4.10 the
convergence is roughly of second order. In the region 200M . t . 350M the two
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Figure 4.10: Convergence test of the numerical algorithm in the sourced case. We
show differences between simulations using different step sizes of 16, 32 and 64 cells
per M . Displayed are the rescaled differences δ32−16 = ξ(h = 1/32M)−ξ(h = 1/16M)
etc. of the field values at the position of the particle for a simulation with ℓ = 6, m = 4
and p = 7, e = 0.3. We see that the convergence is approximately second-order. The
curves are rescaled in such a way as to provide an estimate for the error of the highest
resolution run compared to the real (h ≡ 0) solution.

curves lie on top of each other, as expected for a second-order convergent scheme.
In the region from 400M to 450M there is some difference between the two lines,
caused by cell crossing effects similar to those discussed in section 4.2.7.

4.3.5 Constraint violations

We monitor but do not enforce Eq. (4.39a) and (4.39b). This could in principle
lead to the generation of growing modes similar to the gauge violating modes in the
vector potential method of section 4.4.1. In the case of the first order constraints,
however, we generally find that violations of the constraints are at least three orders
of magnitude smaller than the field quantities themselves. Figures 4.11 and 4.12
compare ξ obtained from its evolution equations to that obtained from Eq. (4.39a)
and (4.39b).
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Figure 4.11: Violations of the constraint Zξ = ξ + 1
ℓ(ℓ+1)

∂ψ
∂t

= 0 in the vacuum region

away from the location of particle. We plot the ratio of the magnitudes of log10 |Zχ|
and χ respectively as obtained from the evolution equations on a spatial slice at
t = 600M . For this slightly eccentric orbit (p = 7.0, e = 0.3) using a stepsize
h = 1/512M the errors in the ℓ = 2, m = 2 mode are at least three orders of
magnitude smaller than the field values. The exponentially growing signal between
300M . r∗ . 500 is a remnant of the initial data pulse travelling outward.
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Figure 4.12: Violations of the constraint Zχ = χ + 1
ℓ(ℓ+1)

∂ψ
∂t

= 0 at the location of

the particle as a function of time. We display χ and log10 |Zχ| for the ℓ = 5, m = 3
mode of a particle on an eccentric orbit with p = 7.8001, e = 0.9 with stepsize
h = 1/2048M . During the time 400M . t . 800M the particle is in the whirl
phase. The exponentially decaying signal before t ≈ 250M is the initial data pulse.
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4.3.6 Monopole mode

For the electromagnetic field, the monopole mode ℓ = 0 is non-radiative. The vector
harmonics Zℓm

A and Xℓm
A cannot be defined in this case and the only surviving multi-

pole mode is ψ. For the monopole case Eq. (4.36) reduces to a wave equation in flat
space

(4.50)
∂2ψ

∂r∗2
− ∂2ψ

∂t2
= 4πf

[
∂(r2j0,0

t )

∂r
− ∂(r2j0,0

r )

∂t

]

,

which is simple enough so that we can solve it analytically. A straightforward calcu-
lation shows that

(4.51)ψ(r∗) = −
√

4πqθ(r∗ − r∗0)

satisfies Eq. (4.50) and corresponds to no outgoing radiation (∂t − ∂r∗)ψ = 0 at
the event horizon and no ingoing radiation (∂t + ∂r∗)ψ = 0 at spatial infinity. The
interpretation of this result is clear: inside of the particle’s orbit at r∗ = r∗0(τ) there
is no charge, and outside the total charge is equal to q.

4.4 Alternative calculation using the vector poten-

tial

In this section we describe a variant of the numerical calculation discussed above that
uses the vector potential instead of the Faraday tensor. To this end we decompose
the vector potential and the sources in terms of vectorial spherical harmonics as in
Eq. (4.30) and substitute into the Maxwell equations for the vector potential in the
Lorenz gauge gαβAα;β = 0 Eq. (2.53). We arrive at two decoupled sets of equations
for the even (Aℓma , vℓm) and odd (ṽℓm) modes, namely Eqs. (4.31a) – (4.31d), which
when written in terms of r∗ read

(4.52a)−∂
2Aℓmt
∂t2

+
∂2Aℓmt
∂r∗2

+
2M

r2

(
∂Aℓmr∗

∂t
− ∂Aℓmt

∂r∗

)

− ℓ(ℓ+ 1)
r − 2M

r3
Aℓmt

= −4π(r − 2M)jℓmt

(4.52b)

−∂
2Aℓmr∗

∂t2
+
∂2Aℓmr∗

∂r∗2
+

2M

r2

(
∂Aℓmt
∂t

− ∂Aℓmr∗

∂r∗

)

−
(

ℓ(ℓ+ 1)
r − 2M

r3
+ 2

(r − 2M)2

r4

)

Aℓmr∗

+ ℓ(ℓ+ 1)
(r − 2M)2

r4
vℓm = −4π(r − 2M)jℓmr∗ − ∂2vℓm

∂t2
+
∂2vℓm
∂r∗2

− ℓ(ℓ+ 1)
r − 2M

r3
vℓm + 2

(r − 2M)

r3
Aℓmr∗ = −4π

r − 2M

r
jℓmv

(4.52c)−∂
2ṽℓm
∂t2

+
∂2ṽℓm
∂r∗2

− ℓ(ℓ+ 1)
r − 2M

r3
ṽellm = −4π

r − 2M

r
jℓmṽ ,

where jℓmα is defined as in Eq. (4.32) in the main text.
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We discretize the set of reduced equations Eqs.(4.36) – (4.37a) using Lousto’s
second order method as described in section 4.3. Since the source terms on the right
hand side are less singular for the vector potential than they are for the Faraday
tensor, we do not have to distinguish between sourced and vacuum cell in the integral
over the potential terms.

Terms containing first derivatives ∂ψ
∂t

, ∂ψ
∂r∗

, where now and in the remainder of the
section ψ stands for any one of Aℓmt , Aℓmr∗ , vℓm or ṽℓm, were not treated in [4], but, for
generic vacuum cells, can be handled in a straightforward manner

(4.53a)
x

cell

du dv V (r)
∂ψ

∂t
= 2h(ψ3 − ψ2)V0 +O(h4)

(4.53b)
x

cell

du dv V (r)
∂ψ

∂r∗
= 2h(ψ4 − ψ1)V0 +O(h4) .

This fails for cells traversed by the particle, since the field is only continuous across
the world line but not differentiable. For these cells we take recourse to Lousto’s
original scheme, which has to deal with a similar issue, and use

(4.54a)
x

cell

du dv V (r)
∂ψ

∂t
=

(

A1∂tψ1 + A2∂tψ2 + A3∂tψ3 + A4∂tψ4

)

V0 +O(h3) ,

(4.54b)
x

cell

du dv V (r)
∂ψ

∂r∗
=

(

A1∂r∗ψ1 +A2∂r∗ψ2 +A3∂r∗ψ3 +A4∂r∗ψ4

)

V0 +O(h3) ,

where A1,. . . ,A4 are the subareas indicated in Fig. 4.1 and ∂tψ1, . . . , ∂tψ4, ∂r∗ψ1, . . . ,
∂r∗ψ4 are zeroth order accurate approximations to the derivatives in the subareas.
We calculate these using grid points outside of the cell on the same side of the world
line as the corresponding subarea, for example

(4.55)∂r∗ψ1 =
ψ(t, r∗ − h) − ψ(t, r∗ − 3h)

2h
+O(h) .

4.4.1 Gauge condition

In contrast to the scalar field, the electromagnetic vector potential has to satisfy a
gauge condition

(4.56)Z ≡ gαβAα;β = 0 .

Analytically the gauge condition is preserved by the evolution equations, so that it
is sufficient to impose it in the initial data. Numerically, however, small violations of
the gauge condition due to numerical errors can be amplified exponentially and come
to dominate the solution. To handle this situation we introduce a gauge damping
scheme as described in [19]. That is we add a term of the form

(4.57)
4M

r2
Z =

4M

r2

(

− 1

r − 2M

∂At
∂t

+
1

r − 2M

∂Ar∗

∂r∗
+

1

r2
Ar∗ −

ℓ(ℓ+ 1)

r2
v

)

to the t components of the evolution equations Eqs. (2.53), which dampens out vi-
olations of the gauge condition. This choice proved to be numerically stable for the
radiative (ℓ > 0) modes but unstable for the monopole (ℓ = 0) mode.
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4.4.2 Monopole mode

The monopole mode of the electromagnetic field is non-radiative. This makes its
behaviour sufficiently different from that of the radiative (ℓ > 0) modes that the
approach outlined earlier fails. In this case Eq. (2.53) reduces to a set of coupled
equations for A0,0

a only. Rather than solving the system of equations directly for A0,0
t

and A0,0
r∗ we use the analytical result for the Ftr component of the Faraday tensor

derived in section 4.3.6. This proves to be sufficient to reconstruct the combination
A0,0
r,t −A0,0

t,r appearing in Eq. (2.133).

4.4.3 Initial values and boundary conditions

We handle the problem of initial data and boundary conditions the same way as in
the scalar case described in section 4.2.4. We arbitrarily choose the fields to vanish
on the characteristic slices u = u0 and v = v0

(4.58)Aα(u = u0) = Aα(v = v0) = 0 ,

thereby adding a certain amount of spurious waves to the solution which show up
as an initial burst. Gauge violations in this initial data are damped out along with
those arising during the evolution.

We implement ingoing wave boundary conditions near the event horizon and
choose a numerical domain that covers the full domain of dependence of the the
initial data near the outer boundary.

4.4.4 Extraction of the field data at the particle

In order to extract the value of the field and its first derivatives at the position of
the particle, we use a variant of the extraction scheme described in section 4.2.6. We
introduce a piecewise polynomial

(4.59)p(x) =

{

c0 + c1x+ c3
2
x2 if x < 0

c′0 + c′1x+
c′
3

2
x2 if x > 0

in x ≡ r∗−r∗0 on the current slice. Its coefficients to the left and right of the world line
are linked by jump conditions cn = c′n + [∂nr∗ψ] listed in Appendix D.2.2. Fitting this
polynomial to the three grid points closest to the particle, we extract approximations

for ψ(t0, r
∗
0) and

∂ψ(t0,r∗0)

∂r∗
which are just the coefficients c0, c1 respectively. Once we

have obtained these, we proceed as in section 4.3.3 following [41] to obtain values for
∂ψ(t0,r∗0)

∂t
.

4.4.5 Convergence tests

We performed regression runs for our second-order convergent code using a non-
zero charge q and an eccentric orbit. We extract the field at the position of the
particle, thus also testing the implementation of the extraction algorithm described
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in section 4.4.4. We choose the ℓ = 6, m = 4 mode of the field generated by a particle
on a mildly eccentric geodesic orbit with p = 7, e = 0.3. As shown in Fig. 4.13
the convergence is roughly of second order. In the region 200M . t . 350M the
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Figure 4.13: Convergence test of the numerical algorithm in the sourced case. We
show differences between simulations using different step sizes of 4, 8 and 16 cells per
M . Displayed are the rescaled differences δ8−4 = Aℓmr∗ (h = 1/8M) − Aℓmr∗ (h = 1/4M)
etc. of the field values at the position of the particle for a simulation with ℓ = 6, m = 4
and p = 7, e = 0.3. We see that the convergence is approximately second-order.

two curves lie on top of each other, as expected for a second-order convergent finite-
difference scheme. In the region from 400M to 450M there is some difference between
the two lines, caused by cell crossing effects similar to those discussed in section 4.2.7.

4.4.6 Gauge violations

Unlike the scalar field, the vector potential has to satisfy a gauge condition. The
gauge condition Eq. (4.56) is not dynamical; it is not part of the evolution system.
Instead the wave equation Eq. (2.53) propagates the Lorenz condition forward in
time. Therefore if the initial conditions Aµ(t = 0), Aµ,t(t = 0) satisfy the Lorenz
condition, so will the vector potential Aµ at any later time. However, the evolution of
Z might be unstable, meaning that small deviations from the exact solution, which
will occur in any numerical scheme, are amplified and grow exponentially. This is the
reason for using the gauge damping scheme introduced in section 4.4.1, which modifies
the evolution equations such that violations of the gauge condition are dynamically
damped, ie. Z is driven towards zero. Plotting the gauge condition versus time as
in Fig. 4.14, we find that any gauge violations are damped away quickly and the
simulations settles to a steady state.

4.4.7 Comparison to direct calculation of the Faraday tensor

Using the vector potential code described above we can reproduce the results obtained
from the Faraday tensor method. The differences are small, with the Faraday tensor
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Figure 4.14: Gauge violation Z = Aα;α = 0 for the ℓ = 3, m = 1 mode of the vector
potential sourced by a particle on an eccentric orbit p = 7.2, e = 0.5 at the location
of the particle. The gauge violations are quickly damped away even at he position of
the source, where the discretization errors are worst.

code generally yielding more accurate results since the costly numerical differentiation
that is necessary in the vector potential calculation is not required.

77



CHAPTER 4. NUMERICAL METHOD

-2e-05

-1e-05

 0

 1e-05

 2e-05

 3e-05

 0  150  300  450  600  750  900  1050 1200 1350

∆ψ

t/M

ψ(Faraday) - ψ(vector)

-4e+00
-2e+00
0e+00
2e+00
4e+00
6e+00

ψ

ψ(Faraday)

Figure 4.15: Differences between F ℓm
tr calculated using the vector potential and cal-

culated using the Faraday tensor method for ℓ = 2, m = 2 mode of field for the
zoom-whirl orbit shown in 5.5. Displayed are the difference and the actual field.
The stepsizes were h = 1.0416̄ × 10−2M and h = 1/512M for the vector potential
calculation and the Faraday tensor calculation respectively.
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Chapter 5

Self force

In this chapter we display results for the self-force calculation of the scalar and elec-
tromagnetic field.

5.1 Scalar field

For the scalar field we display results for the numerically calculated multipole coeffi-
cients as well as the self-force obtained from these.

5.1.1 High-ℓ behaviour of the multipole coefficients

Inspection of Eq. (3.26) reveals that a plot of Φ(µ)ℓ as a function of ℓ (for a given
value of t) should display a linear growth in ℓ for large ℓ. Removing the A(µ) term
should produce a constant curve, removing the B(µ) term (given that C(µ) = 0) should
produce a curve that decays as ℓ−2, and finally, removing theD(µ) term should produce
a curve that decays as ℓ−4. It is a powerful test of the numerical method to check
whether these expectations are borne out by the numerical data. Fig. 5.1 plots the
remainders as obtained from our numerical simulation, demonstrating the expected
behaviour. It displays, on a logarithmic scale, the absolute value of Re ΦR

(+)ℓ, the

real part of the (+) component of the self-force. The orbit is eccentric (p = 7.2,
e = 0.5), and all components of the self-force require regularization. The first curve
(in triangles) shows the unregularized multipole coefficients that increase linearly in
ℓ, as confirmed by fitting a straight line to the data. The second curve (in squares)

79



CHAPTER 5. SELF FORCE

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

 0  2  4  6  8  10  12  14

lo
g 1

0|
R

eΦ
(+

)|

ell

ReΦ(+)
ReΦ(+)-A
ReΦ(+)-A-B
ReΦ(+)-A-B-D

Figure 5.1: Multipole coefficients of the dimensionless self-force M2

q
Re ΦR

(+) for a

particle on an eccentric orbit (p = 7.2, e = 0.5). The coefficients are extracted at
t = 500M along the trajectory shown in Fig. 5.3. The plots show several stages of
the regularization procedure, with a closer description of the curves to be found in
the text.

shows partially regularized coefficients, obtained after the removal of (ℓ + 1/2)A(µ);
this clearly approaches a constant value for large ℓ. The curve made up of diamonds
shows the behaviour after removal of B(µ); because C(µ) = 0, it decays as ℓ−2, a
behaviour that is confirmed by a fit to the ℓ ≥ 5 part of the curve. Finally, after
removal of D(µ)/[(ℓ− 1

2
) (ℓ+ 3

2
)] the terms of the sum decrease in magnitude as ℓ−4 for

large values of ℓ, as derived in [18]. Each one of the last two curves would result in a
converging sum, but the convergence is much faster after subtracting the D(µ) terms.
We thereby gain more than 2 orders of magnitude in the accuracy of the estimated
sum.

Figure 5.1 provides a sensitive test of the implementation of both the numerical
and analytical parts of the calculation. Small mistakes in either one will cause the
difference in Eq. (3.26) to have a vastly different behaviour.

5.1.2 Self-force on a circular orbit

For the case of a circular orbit, the regularization parameters A(0), B(0), and D(0)

all vanish identically, so that the (0) (or alternatively the t) component of the self-
force does not require regularization. Figure 5.2 thus shows only one curve, with the
magnitude of the multipole coefficients decaying exponentially with increasing ℓ.

As a final test, in Table 5.1 we compare our result for the self-force on a particle
in a circular orbit at r = 6M to those obtained in [23, 32] using a frequency-domain
code. For a circular orbit, a calculation in the frequency domain is more efficient, and
we expect the results of [23, 32] to be much more accurate than our own results. This
fact is reflected in the number of multipole coefficients we can reliably extract from
the numerical data before being limited by the accuracy of the numerical method:
the frequency-domain calculation found usable multipole coefficients up to ℓ = 20,
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Figure 5.2: Multipole coefficients of ΦR
(0) for a particle on a circular orbit. Note that

ΦR
(0)ℓ is linked to ΦR

t via ΦR
t =

√
f0Φ

R
(0). The multipole coefficients decay exponentially

with ℓ until ℓ ≈ 16, at which point numerical errors start to dominate.

This work: Previous work: Diaz-Rivera
time-domain frequency-domain [23] et. al. [32]

M2

q
ΦR

t 3.60339 × 10−4 3.60907254× 10−4

M2

q
ΦR
r 1.6767 × 10−4 1.67730 × 10−4 1.6772834 × 10−4

M
q
ΦR
φ −5.30424 × 10−3 −5.30423170 × 10−3

Table 5.1: Results for the self-force on a scalar particle with scalar charge q on a
circular orbit at r0 = 6M . The first column lists the results as calculated in this
work using time-domain numerical methods, while the second and third columns list
the results as calculated in [23, 32] using frequency-domain methods. For the t and
φ components the number of digits is limited by numerical round off error. For the
r component the number of digits is limited by the truncation error of the sum of
multipole coefficients.
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whereas our data for ΦR
(0)ℓ is dominated by noise by the time ℓ reaches 16. Figure 5.2

shows this behaviour.

5.1.3 Accuracy of the numerical method

Several figures of merit can be used to estimate the accuracy of numerical values for
the self-force.

An estimate for the truncation error arising from truncating the summation in
Eq. (3.26) at some ℓmax can be calculated by considering the behaviour of the re-
maining terms for large ℓ. Detweiler, Messaritaki, and Whiting [18] showed that the
remaining terms scale as ℓ−4 for large ℓ. They find the functional form of the terms
to be

(5.1)
EP3/2

(2ℓ− 3)(2ℓ− 1)(2ℓ+ 3)(2ℓ+ 5)
,

where P3/2 = 36
√

2. We fit a function of this form to the tail end of a plot of the
multipole coefficients to find the coefficient E in Eq. (5.1). Extrapolating to ℓ → ∞
we find that the truncation error is

(5.2)ǫ =

∞∑

ℓ=ℓmax

[Eq. (5.1)] =
12
√

2Eℓmax

(2ℓmax + 3)(2ℓmax + 1)(2ℓmax − 1)(2ℓmax − 3)

where ℓmax is the value at which we truncate the summation. For all but the special
case of the (0) component for a circular orbit, for which all regularization parameters
vanish identically, we use this approach to calculate an estimate for the truncation
error.

A second source of error lies in the numerical calculation of the retarded solution
to the wave equation. This error depends on the step size h used to evolve the field
forward in time. For a numerical scheme of a given convergence order, we can estimate
this discretization error by extrapolating the differences of simulations using different
step sizes down to h = 0. This is what was done in the graphs shown in Sec. 4.2.7.

We display results for mildly eccentric orbits. High eccentricity causes ∂rΦ (dis-
played in Fig. 4.7) to be plagued by high frequency noise produced by effects similar
to those described in Sec. 4.2.7. This makes it impossible to reliably estimate the
discretization error for these orbits. We do not expect this to be very different for
highly eccentric orbits.

Finally we compare our final results for the self-force Fα to “reference values”. For
circular orbits, frequency-domain calculations are much more accurate than our time-
domain computations. We thus compare our results to the results obtained in [23].
Table 5.2 lists typical values for the various errors listed above.

5.1.4 Mildly eccentric orbit

We choose a particle on an eccentric orbit with p = 7.2, e = 0.5 which starts at
r = pM/(1 − e2), halfway between periastron and apastron. The field is evolved for
1000M , corresponding to about 6 angular and two radial periods with a resolution
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error estimation mildly eccentric orbit

truncation error (M
2

q
Φ(+)) ≈ 2 × 10−3%

discretization error (M
2

q
∂rΦℓm) ≈ 10−5%

comparison with reference values circular orbit
M2

q2
Ft 0.2%

M2

q2
Fr 0.04%

M
q2
Fφ 2 × 10−4%

Table 5.2: Estimated values for the various errors in the components of the self-force
as described in the text. We show the truncation and discretization errors for a
mildly eccentric orbit and the total error for a circular orbit. The truncation error is
calculated using a plot similar to the one shown in Fig. 5.7. The discretization error
is estimated using a plot similar to that in Fig. 4.7 for the ℓ = 2, m = 2 mode, and
the total error is estimated as the difference between our values and those of [23]. We
use p = 7.2 , e = 0.5 for the mildly eccentric orbit and p = 6 for the circular orbit.
Note that we use the tetrad component Φ(+) for the truncation error and the vector
component ∂rΦ for the discretization error. Both are related by the translation table
Eqs. (2.129), we expect corresponding errors to be comparable for Φ(+) and ∂rΦ.

of 16 grid points per M , both in the t and r∗ directions, for ℓ = 0. Higher values of ℓ
(and thus m) require a corresponding increase in the number of grid points to achieve
the same fractional accuracy. Multipole coefficients for 0 ≤ ℓ ≤ 15 are calculated and
used to reconstruct the regularized self-force Fα along the geodesic. Figure 5.4 shows
the result of the calculation. For the choice of parameters used to calculate the force

 10
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 15  10  5  0  5  10  15

y
/M

x/M

Figure 5.3: Trajectory of a particle with p = 7.2, e = 0.5. The cross-hair indicates
the point where the data for Fig. 5.1 was extracted.

shown in Fig. 5.4, the error bars corresponding to the truncation error (which are
already much larger than than the discretization error) would be of the order of the
line thickness and have not been drawn.
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Figure 5.4: Regularized dimensionless self-force M2

q2
Ft,

M2

q2
Fr and M

q2
Fφ on a particle

on an eccentric orbit with p = 7.2, e = 0.5.

Already for this small eccentricity, we see that the self-force is most important
when the particle is closest to the black hole (ie. for 200M . t . 400M and 600M .

t . 800M); the self-force acting on the particle is very small once the particle has
moved away to r ≈ 15M .

Following for example the treatment of Wald [34], Appendix C, it is easy to see
that the rates of change Ė and J̇ (per unit proper time) are directly related to
components of the acceleration aα (and therefore force) experienced by the particle
via

(5.3)Ė = −at , J̇ = aφ .

The self-force shown in Fig. 5.4 therefore confirms our näıve expectation that the
self-force should decrease both the energy and angular momentum of the particle as
radiation is emitted. Interestingly, the r component of the force is always positive,
pointing away from the black hole. The decay of the orbit is driven by losses of energy
and angular momentum, not by the self-force pushing the particle towards to black
hole.

5.1.5 Zoom-whirl orbit

Highly eccentric orbits are of most interest as sources of gravitational radiation. For
nearly parabolic orbits with e . 1 and p & 6 + 2e, a particle revolves around the
black hole a number of times, moving on a nearly circular trajectory close to the event
horizon (“whirl phase”) before moving away from the black hole (“zoom phase”).
During the whirl phase the particle is in the strong field region of the black hole,
emitting a copious amount of radiation. Figures 5.5 and 5.6 show the trajectory of
a particle and the force on such an orbit with p = 7.8001, e = 0.9 for an simulation
which spans about one radial period and about 11 angular periods. Even more so
than for the mildly eccentric orbit discussed in Sec. 5.1.4, the self-force (and thus the
amount of radiation produced) is much larger while the particle is close to the black
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Figure 5.5: Trajectory of a particle on a zoom-whirl orbit with p = 7.8001, e = 0.9.
The cross-hairs indicate the positions where the data shown in Fig. 5.7 and 5.8 was
extracted.
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Figure 5.6: Self-force acting on a particle. Shown is the dimensionless self-force M2

q2
Ft,

M2

q2
Fr and M

q2
Fφ on a zoom-whirl orbit with p = 7.8001, e = 0.9. The inset shows a

magnified view of the self-force when the particle is about to enter the whirl phase.
No error bars showing an estimate error are shown, as the errors shown for example in
Table 5.2 are to small to show up on the graph. Notice that the self-force is essentially
zero during the zoom phase 500M . t . 2000M and reaches a constant value very
quickly after the particle enters into the whirl phase.
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hole than when it zooms out.
It is instructive to have a closer look at the force acting on the particle when it

is within the zoom phase, and also when it is moving around the black hole on the
nearly circular orbit of the whirl phase. In Fig. 5.7 and Fig. 5.8 we show plots of Φ(0)ℓ

vs. ℓ after the removal of the A(µ), B(µ), and D(µ) terms. While the particle is still
zooming in toward the black hole, Φ(0)ℓ behaves exactly as for the mildly eccentric
orbit described in Sec. 5.1.4 over the full range of ℓ plotted; ie. the magnitude of
each term scales as ℓ0, ℓ−2 and ℓ−4, after removal of the A(µ), B(µ), and D(µ) terms
respectively. Close to the black hole, on the other hand, the particle moves along
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Figure 5.7: Multipole coefficients of M2

q
Re ΦR

(0) for a particle on a zoom-whirl orbit

(p = 7.8001, e = 0.9). The coefficients are extracted at t = 2000M as the particle
is about to enter the whirl phase. As ṙ is non-zero, all components of the self-force
require regularization and we see that the dependence of the multipole coefficients
on ℓ is as predicted by Eq. 3.26. After the removal of the regularization parameters
A(µ), B(µ), and D(µ) the remainder is proportional to ℓ0, ℓ−2 and ℓ−4 respectively.

a nearly circular trajectory. If the orbit were perfectly circular for all times, ie.
ṙ ≡ 0, then the (0) component would not require regularization at all, and the
multipole coefficients would decay exponentially, resulting in a straight line on the
semi-logarithmic plot shown in Fig. 5.8. As the real orbit is not precisely circular,
curves eventually deviate from a straight line. Removal of the A(µ) term is required
almost immediately (beginning with ℓ ≈ 3), while the D(µ) term starts to become
important only after ℓ ≈ 11. This shows that there is a smooth transition from
the self-force on a circular orbit, which does not require regularization of the t and
φ components, to that of a generic orbit, for which all components of the self-force
require regularization.

5.2 Electromagnetic field—Faraday tensor

For the electromagnetic field we display results for the numerically calculated multi-
pole coefficients as well as the self-force calculated from these.
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Figure 5.8: Multipole coefficients of Re ΦR
(0) for a particle on a zoom-whirl orbit

(p = 7.8001, e = 0.9). The coefficients are extracted at t = 2150M while the
particle is in the whirl phase. The orbit is nearly circular at this time, causing the
dependence on ℓ after removal of the regularization parameters to approximate that
of a true circular orbit.

5.2.1 High-ℓ behaviour of the multipole coefficients

Inspection of Eq. (3.36) reveals that a plot of F ℓ
(µ)(ν) as a function of ℓ (for a given value

of t) should display a linear growth in ℓ for large ℓ. Removing the A(µ)(ν) term should
produce a constant curve, removing the B(µ)(ν) term (given that C(µ)(ν) = 0) should
produce a curve that decays as ℓ−2, and finally, removing the D(µ)(ν) term should pro-
duce a curve that decays as ℓ−4. It is a powerful test of the overall implementation to
check whether the numerical data behaves as expected. Fig. 5.9 plots the remainders
as obtained from our numerical simulation, demonstrating the expected behaviour.
It displays, on a logarithmic scale, the absolute value of ImFR

(+)(−)ℓ, the imaginary

part of the (+)(−) component of the Faraday tensor. The orbit is eccentric (p = 7.2,
e = 0.5), and all components of the self-force require regularization. The first curve
(in triangles) shows the unregularized multipole coefficients that increase linearly in
ℓ, as confirmed by fitting a straight line to the data. The second curve (in squares)
shows partially regularized coefficients, obtained after the removal of (ℓ+1/2)A(µ)(ν);
this clearly approaches a constant for large values of ℓ. The curve made up of dia-
monds shows the behaviour after removal of B(µ)(ν); because C(µ)(ν) = 0, it decays as
ℓ−2, a behaviour that is confirmed by a fit to the ℓ ≥ 5 part of the curve. Finally, after
removal of D(µ)(ν)/[(ℓ− 1

2
) (ℓ+ 3

2
)] the terms of the sum decrease in magnitude approx-

imately as ℓ−4.5. This differs from the expected behaviour of ℓ−4 as derived in [18]; we
expect this to be due to the fact that we truncated the series at ℓ = 15, which seems
to be not large enough to show the asymptotic behaviour. Extending the range to
very high values of ℓ proved to be very difficult, since the finite-difference scheme is
only second order convergent, so that the numerical errors become dominant by the
time the asymptotic behaviour begins to emerge.

Each one of the last two curves would result in a converging sum, but the conver-
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Figure 5.9: Multipole coefficients of the dimensionless Faraday tensor component
M2

q
ImFR

(+)(−) for a particle on an eccentric orbit (p = 7.2, e = 0.5). The coefficients
are extracted at t = 500M along the trajectory shown in Fig. 5.3. The plots show
several stages of the regularization procedure, with a closer description of the curves
to be found in the text.

gence is faster after subtracting the D(µ)(ν) terms. We thereby gain about one order
of magnitude in the accuracy of the estimated sum.

Figure 5.9 provides a sensitive test of the implementation of both the numerical
and analytical parts of the calculation. Small mistakes in either one will cause the
difference in Eq. (3.36) to have a vastly different behaviour.

5.2.2 Accuracy of the numerical method

In this work we are less demanding with the numerical accuracy then we were sec-
tion 4.2, where we describe a very high accuracy numerical code. Implementing this
code is very tedious even for the scalar case, and much more so for the electromag-
netic case treated here. Therefore we implemented a simpler method that allows us to
access the physics of the problem without being bogged down in technical problems
due to a complicated numerical method.

An estimate for the truncation error arising from cutting short the summation
in Eq. (3.36) at some ℓmax can be calculated by considering the behaviour of the
remaining terms for large ℓ as done in Eqs. (5.1) and (5.2).

A second source of error lies in the numerical calculation of the retarded solution
to the wave equation. This error depends on the step size h used to evolve the field
forward in time. For a numerical scheme of a given convergence order, we can estimate
this discretization error by extrapolating from simulations using different step sizes
down to h = 0. This is what was done in the graphs shown in Sec. 4.3.4.

We display results for the mildly eccentric orbit show in Fig. 5.3 with data ex-
tracted at t = 500M ie. at the instant shown in Fig. 5.9. At this moment, the
multipole coefficients of FR

(+) decay as expected, but for example the FR
(0) component

decays faster. We choose an orbit of low eccentricity as high eccentricity causes the
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spatial derivatives to be plagued by high frequency noise, as discussed in section 4.2.7.
This makes it impossible to reliably estimate the discretization error for these orbits.

Table 5.3 lists typical values for the errors listed above.

error estimation mildly eccentric orbit

truncation error [M
2

q2
Re(FR

(+))] ≈ 5 × 10−2%

discretization error [M
2

q
∂rAt] ≈ 10−1%

Table 5.3: Estimated values for the various errors in the components of the self-force
as described in the text. We show the truncation and discretization errors for the
mildly eccentric orbit (p = 7.2, e = 0.5). The truncation error is calculated using a
plot similar to the one shown in Fig. 5.9. The discretization error is estimated using
a plot similar to that in Fig. 4.10 for the ℓ = 2, m = 2 mode.

5.2.3 Mildly eccentric orbit

We choose a particle on an eccentric orbit with p = 7.2, e = 0.5 which starts at
r = pM/(1 − e2), halfway between periastron and apastron. The field is evolved for
600M , corresponding to about 5 angular and two radial periods, with a resolution
of 32 grid points per M , both in the t and r∗ directions, for ℓ = 0. Higher values of
ℓ (and thus m) require a corresponding increase in the number of grid points used
to achieve the same fractional accuracy. Multipole coefficients for 0 ≤ ℓ ≤ 15 are
calculated and used to reconstruct the regularized self-force Fα along the geodesic.
Figure 5.10 shows the result of the calculation. For the choice of parameters used to
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Figure 5.10: Regularized dimensionless self-force M2

q2
Ft,

M2

q2
Fr and M

q2
Fφ on a particle

on an eccentric orbit with p = 7.2, e = 0.5.

calculate the force shown in Fig. 5.10, the error bars corresponding to the truncation
error (which are already much larger than than the discretization error) would be of
the order of the line thickness and have not been drawn.
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Already for this small eccentricity, we see that the self-force is most important
when the particle is closest to the black hole (ie. for 200M . t . 400M); the
self-force acting on the particle is very small once the particle has moved away to
r ≈ 15M .

Out observation from the scalar self-force still apply, namely that the self-force is
decreasing energy and angular momentum, but also somewhat counter-intuitively is
pointing away from the black hole.

5.2.4 Zoom-whirl orbit

Highly eccentric orbits are of most interest as sources of gravitational radiation. For
nearly parabolic orbits with e . 1 and p & 6 + 2e, a particle revolves around the
black hole a number of times, moving on a nearly circular trajectory close to the event
horizon (“whirl phase”), before moving away from the black hole (“zoom phase”).
During the whirl phase the particle is in the strong field region of the black hole,
emitting a copious amount of radiation. Figures 5.5 and 5.11 show the trajectory
of a particle and the force on such an orbit with p = 7.8001, e = 0.9. Even more
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Figure 5.11: Self-force acting on a particle. Shown is the dimensionless self-force
M2

q2
Ft,

M2

q2
Fr and M

q2
Fφ on a zoom-whirl orbit with p = 7.8001, e = 0.9. No error

bars showing an estimate error are shown, as the errors shown are to small to show
up on the graph. Notice that the self-force is essentially zero during the zoom phase
900M . t . 1200M and reaches a constant value very quickly after the particle
enters into the whirl phase.

so than for the mildly eccentric orbit discussed in Sec. 5.2.3, the self-force (and thus
the amount of radiation produced) is much larger while the particle is close to the
black hole than when it zooms out. The force graph is very similar to that obtained
for the scalar self-force in the scalar case in section 5.1.5, however the overshooting
behaviour at the onset and near the end of the whirl phase is not as pronounced.

In Fig. 5.13 and Fig. 5.12 we show plots of F ℓ
(0) constructed from F ℓ

(µ)(ν) after
the removal of the A(µ)(ν), B(µ)(ν), and D(µ)(ν) terms. We observe a behaviour very
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Figure 5.12: Multipole coefficients of M2

q
ReFR

(0) for a particle on a zoom-whirl orbit

(p = 7.8001, e = 0.9). The coefficients are extracted at t = 525M when the particle
is deep within the whirl phase. Here ṙ ≈ 0 and the behaviour of FR

(µ),ℓ is very close to
that for a circular orbit, requiring very little regularization. Red triangles are used
for the unregularized multipole coefficients F(0),ℓ, squares, diamonds and disks are
used for the partly regularized coefficients after the removal of the A(0), B(0) and D(0)

terms respectively.
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Figure 5.13: Multipole coefficients of M2

q
ReFR

(0) for a particle on a zoom-whirl orbit

(p = 7.8001, e = 0.9). The coefficients are extracted at t = 1100M when the particle
is far away from the black hole. As ṙ is non-zero, all components of the self-force
require regularization and we see that the dependence of the multipole coefficients on ℓ
is as predicted by Eq. 3.36. After the removal of the regularization parameters A(µ)(ν),
B(µ)(ν), and D(µ)(ν) the remainder is proportional to ℓ0, ℓ−2 and ℓ−4 respectively.
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similar to that described in section 5.1.5 on the scalar self-force. While the particle
is whirling around the black hole, the multipole coefficients behave very similar to
those of a circular orbit. Only for high values of ℓ is the inclusion of the D(0) terms
required . During the zoom phase on the other hand all components of the self-force
require regularization right away.

5.2.5 Effects of the conservative self-force

Non-geodesic motion

To obtain expressions for E and J under the influence of the self-force, we follow the
discussion in [32]. We retain the symbols E and J to denote the t and φ components
of uα even though these components are no longer constants of motion

(5.4)uα = [−E(τ), ṙ/f, 0, J(τ)] .

Following for example the treatment of Wald [34], Appendix C, it is easy to see that
the rates of change Ė and J̇ (per unit proper time) are given by

(5.5)Ė = −Ft
m

, J̇ =
Fφ
m

,

where Fα is the force experienced by the particle. The normalization condition for
the four velocity reads

(5.6)−1 = uαuα = −E
2

f
+
ṙ2

f
+
J2

r2
,

and the r-component of the geodesic equation is

(5.7)
F r

m
= r̈ − Mṙ2

(r − 2M)r
− (r − 2M)J2

r4
+

ME2

(r − 2M)r
,

where F r is the radial component of the force, which we imagine to be the self-force
F r

self = qF r
µu

µ. Solving Eq. (5.6) and (5.7) for E2 and J2 we find

(5.8a)E2 =

[

ṙ2 +
(r − 2M)rr̈

r − 3M
+

(r − 2M)2

(r − 3M)r

]

− (r − 2M)r

r − 3M

F r

m
,

(5.8b)J2 =

[
r4r̈

r − 3M
+

Mr2

r − 3M

]

− r4

r − 3M

F r

m
,

where the terms in square brackets are the geodesic expressions of energy and angular
momentum. Eqs. (5.8a) and (5.8b) are reformulations of the normalization condition
Eq. (5.6) and the radial equation of motion Eq. (5.7); no new physics is present. The
new aspect lies in interpreting them to give energy and angular momentum of the
orbit once its true radial motion and the radial force have been specified. This is
unusual in that ordinarily, in the geodesic context, we would use the constants of
motion E and J and the expression for the force to obtain equations governing the
radial motion. Here we have turned the procedure around.
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For small perturbing force of order ε we expand Eqs. (5.8a) and (5.8b) in terms
of the perturbation strength around a given geodesic and find

(5.9a)E = E0 + ∆E ≈ E0 −
(r − 2M)r

2(r − 3M)E0

F r

m
+O(ε2) ,

(5.9b)J = J0 + ∆J ≈ J0 −
r4

2(r − 3M)J0

F r

m
+O(ε2) .

Here r is the true position of the particle r including the effect of the force, it differs
from the geodesic unperturbed position r0. Further,

(5.10a)E0 =

√

ṙ2 +
(r − 2M)rr̈

(r − 3M)
+

(r − 2M)2

(r − 3M)r
,

(5.10b)J0 =

√

r2(r2r̈ +M)

r − 3M

are energy and angular momentum of the true trajectory. We stress that E0 and
J0 are not the geodesic values for energy and angular momentum. They are of the
correct form but are evaluated using the accelerated values for r, ṙ and r̈ (instead of
the geodesic values r0, ṙ0, etc.) and therefore contain terms of order ε. Quantities
multiplying F r can be evaluated on the unperturbed geodesic since F r is already of
order ε, so r could be replaced by r0. In this work however, we fix the radial motion
completely, either by forcing the particle to move on a circular orbit of given r or by
specifying its radial motion by other means. Therefore we know the particle’s true
(since we enforce it) trajectory, but the corresponding unperturbed geodesic.

The fractional changes ∆E/E0 and ∆J/J0, withrespect to the “accelerated” en-
ergy and angular momentum, are given by

(5.11a)∆E/E0 = − (r0 − 2M)r0
2(r0 − 3M)E2

0

F r

m
+O(ε2) ,

(5.11b)∆J/J0 = − r4
0

2(r0 − 3M)J2
0

F r

m
+O(ε2) .

Once the perturbations in E and J are known, we calculate the change in the
angular frequency

(5.12)Ω ≡ dϕ0

dt
=
r − 2M

r3

J

E
.

For small perturbing force we expand in powers of the perturbation strength

(5.13)Ω =
r0 − 2M

r3
0

J0

E0

[

1 −
(

r4
0

2(r0 − 3M)J2
0

− (r0 − 2M)r0
2(r0 − 3M)E2

0

)
F r

m

]

+O(ε2) .

The relative change ∆Ω/Ω0 is given by

(5.14)∆Ω/Ω0 = −
(

r4
0

2(r0 − 3M)J2
0

− (r0 − 2M)r

2(r0 − 3M)E2
0

)
F r

m
+O(ε2) .
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Conservative self-force

Before we give an expression for the conservative self-force, we have to introduce the
concept of an advanced force. In analogy to the retarded Green function we define an
advanced Green function G−(x, x̄) as in Eq. (2.47). It has support on and inside the
future light cone of the field point x. A self-force defined in terms of G−(x, x̄) depends
on the entire future history of the particle. Numerically we find the advanced force by
running the simulation backwards in time. That is we start the evolution on the very
last time slice and evolve backwards in time until we reach the slice corresponding
to t = 0. We reverse the boundary condition at the event horizon to be outgoing
radiation only (∂t + ∂r∗)ψ = 0 and adjust the outer boundary so as to simulate
only the backwards domain of dependence of the initial slice. We do not change the
trajectory of the particle. We do not change the regularization parameters, since they
depend only on the local behaviour of the field and are insensitive to the boundary
conditions far away.

With this preliminary work in place we follow the literature (see for example [42])
and define the dissipative part of the self-force to be the half-retarded minus half-
advanced force and the conservative part to be the half-retarded plus half-advanced
force

(5.15a)F diss
α ≡ 1

2

(
F ret
α − F adv

α

)
,

(5.15b)F cons
α ≡ 1

2

(
F ret
α + F adv

α

)
.

The conservative force is the time reversal invariant part of the self-force. It does
not affect the radiated energy or angular momentum fluxes Ė and J̇ ; it shifts the
values of E and J away from their geodesic values, affecting the orbital motion and
the phase of the emitted waves.

Circular orbits

The effect of the conservative self-force is most clearly observed for circular orbits,
where the unperturbed angular frequency Ω0 as well as the shift due to the pertur-
bation are constant in time.

For a particle in circular motion the self-force is constant in time and it turns out
that the radial component is entirely conservative whereas the t and φ components
are entirely dissipative. For any circular orbit ṙ = r̈ = 0 and E0, J0 are given by

(5.16a)E0 =
r0 − 2M

√

r0(r0 − 3M)
,

(5.16b)J0 = r0

√
M

r0 − 3M
.

Substituting these into Eq. (5.13) we find

(5.17)Ω =

√

M

r3
0

− (r0 − 3M)

2mM

√

M

r0
Fr +O(ε2) ,
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where the first term is just the angular frequency for an unperturbed geodesic at
radius r0. The fractional change ∆Ω/Ω0 is then

(5.18)
∆Ω

Ω0
= −(r0 − 3M)r0

2mM
Fr +O(ε2) .

Similarly the fractional changes in E and J : ∆E/E0 and ∆J/J0 are given by

(5.19a)∆E/E0 = −r0 − 2M

2m

√
r0

r0 − 3M
Fr ,

(5.19b)∆J/J0 = −(r0 − 2M)r2
0

2m

√

1

M(r0 − 3M)
Fr .
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Figure 5.14: Fractional change ∆Ω/Ω0 induced by the presence of the conservative
self-force. The effect of the self-force is to move the radius of the orbit outward,
decreasing its angular frequency.

Figure 5.14 shows the fractional change in Ω0, E and J as a function of the orbit’s
radius r0. Each of Ω0, E and J is decreased by the self-force, only slightly so for large
orbits r ≫ M but up to several percent of the charge to mass ratio q2

Mm
for orbits

close to the black hole. Since their effect on the phase of the waveform accumulates
secularly even such a small effect will become quite noticeable in one radiation reaction
time.

Eccentric orbits

For eccentric orbits the self-force is no longer constant in time and we have to numer-
ically calculate both the retarded and the advanced self-force in order to construct
the conservative self-force.
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Figure 5.15: r component of the dimensionless self-force acting on a particle on a
zoom-whirl orbit (p = 7.8001, e = 0.9) around a Schwarzschild black hole. Shown are
the retarded (solid, red), advanced (dashed, green), conservative (dotted, blue) and
dissipative (finely dotted, pink) force acting on the particle.
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Figure 5.16: φ component of the dimensionless self-force acting on a particle on a
zoom-whirl orbit (p = 7.8001, e = 0.9) around a Schwarzschild black hole. Shown are
the retarded (solid, red), advanced (dashed, green), conservative (dotted, blue) and
dissipative (finely dotted, pink) force acting on the particle.
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Conservative force on zoom-whirl orbits We calculate the conservative self-
force on a zoom-whirl orbit with p = 7.8001, e = 0.9. Figs. 5.15 and 5.16 display
the breakdown of the self-force into retarded and advanced, and conservative and
dissipative parts for a particle on a zoom-whirl orbit. In both plots the force is very
weak when the particle is in the zoom phase t . 400M or t & 800M and nearly
constant while the particle is in the whirl phase 400M . t . 800M . Inspection of
the behaviour of the r component reveals that it is almost exclusively conservative,
with only a tiny dissipative effect when the particle enters or leaves the whirl phase.
This result is consistent with the observation that the particle moves on a nearly
circular trajectory while in the whirl phase, for which the radial component is precisely
conservative. Similarly the φ component is almost entirely dissipative, with only a
small conservative contribution when the particle enters or leaves the whirl phase, its
maximum coinciding with that of r̈ (not shown on the graph).

We calculate the relative changes in E, J and Ω under the influence of the self-force
using Eqs. (5.11a), (5.11b), (5.14). Fig. 5.17 displays the relative changes ∆E/E0,
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Figure 5.17: Relative change in Ω, E, J for a particle on a zoom-whirl orbit due to
the electromagnetic self-force.

∆J/J0 and ∆Ω/Ω0 for a particle on a zoom whirl orbit p = 7.8001, e = 0.9. The
change in E, J and Ω is strongest (and negative) in the whirl phase when r ≈ 4.1M .
It is consistent with the shift experienced by a particle on a circular orbit at 4.1M .

Retardation of the self-force For a scalar charge moving in a weak gravitational
field Poisson [43] showed that the self-force is delayed with respect to the particle
motion by twice the light travel time from the particle to the central body. In a
spacetime where the central body is compact the treatment of [43] is no longer directly
applicable, but we still expect some retardation in the self-force when compared to
the particle’s motion. To study this effect, we calculate the self-force on an eccentric
orbit with p = 78, e = 0.9; this orbit is ten times larger than the zoom-whirl orbit
discussed earlier. The large orbit was chosen so as to be able to clearly see any possible
retardation which might not be visible if the particle’s orbit is deep within the strong
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field region close to the black hole. Figures 5.18 and 5.19 display plots of the r and
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Figure 5.18: r component of the dimensionless self-force acting on a particle on an
orbit with p = 78, e = 0.9. Shown are the retarded and advanced forces as well as ṙ.
The vertical line at t ≈ 2383M marks the time of closest approach to the black hole.
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Figure 5.19: φ component of the dimensionless self-force acting on a particle on an
orbit with p = 78, e = 0.9. Shown are the retarded and advanced forces as well as ṙ.
The vertical line at t ≈ 2383M marks the time of closest approach to the black hole.

φ components of the self-force acting on the particle close to periastron. Shown are
the retarded and advanced forces as well as the particle’s radial velocity ṙ. Without
considering retardation we expect the self-force to be strongest when the particle
is closest to the black hole, when ṙ = 0, as evident in Fig. 5.15. Clearly for the r
component displayed in Fig. 5.18 the retarded and advanced forces both peak at a time
very close to the zero crossing of ṙ, suggesting very little time delay in the r component
of the self-force. In Fig. 5.19 on the other hand the retarded and advanced forces peak
away from the time of closest approach tmin. Inspection of the graph shows that the
delay (advance) between the time of closest approach and the peak in the retarded
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(advanced) force is compatible with a delay of ∆tmin ≈ 2(rmin − 3.0M) ≈ 74M .
Using a delay of ∆t ≈ 2[r0(t) − 3.0M ] and plotting F ret

φ (t+ ∆t) and −F adv
φ (t− ∆t)

versus t, we see in Fig. 5.20 that both curves visually lie on top of each other, and the
maximum is located at tmin. This suggests that the dissipative part of the self-force is
largely due to radiation that travels into the strong field region close to the black hole
and is scattered back to the particle. The time delay can then be loosely interpreted
as the time it takes the signal to travel to the light ring around the black hole and
back to the particle. This interpretation is loose for two reasons. First it is r∗ and not
r that is associated with the light travel time. Using r∗, however, does not lead to a
better overlap of the curves once a suitable constant offset is chosen. Second, for the
zoom-whirl orbit shown in Fig. 5.11 the (shallow) maximum in the self-force is offset
by only ∆t ≈ 2(r0(t)− 1.0M), which leads to a reasonable overlap of the two curves.
Interestingly using r∗ instead of r yields a worse overlap. For very large orbits such
as p = 780, e = 0.9, it is impossible to distinguish the small constant offset from the
dominant 2r0(t) contribution.

5.2.6 Weak field limit

As a last application we use our code to compare the numerical self-force in the weak
field region to the self-force calculated using the weak field expression

(5.20)fself = λc
q2

m

M

r3
r̂ + λrr

2

3

q2

m

dg

dt
, g = −M

r2
r̂ ,

of [42, 44]. Here boldface symbols are used for three vectors, a hat indicates a vector
which is normalized using the flat space spatial metric δαβ . λc and λrr are labels for
the conservative and dissipative parts of the self-force respectively. g is the Newtonian
gravitational acceleration around a spherical mass of mass M . The radial coordinate
r is the isotropic coordinate r̄, not the areal coordinate rSW used in the remainder of
the paper.

This identification of r with the isotropic coordinate is not unique, but is motivated
by the fact that the Newtonian limit of the Schwarzschild metric is

(5.21)gαβ dxα dxβ = −(1 + 2Φ) dt2 + (1 − 2Φ)
(

dr̄2 + r̄2 dθ2 + r̄2 sin2 θ dφ2
)

,

where Φ(r̄) = −M
r̄

. This in turn is most easily derived by linearizing the isotropic
metric

(5.22)gαβ dxα dxβ = −
(
1 − M

rr̄

)
2

(
1 + M

rr̄

)
2

dt2 +

(

1 +
M

rr̄

)4 (

dr̄2 + r̄2 dθ2 + r̄2 sin2 θ dφ2
)

in M. r̄ is linked to the Schwarzschild areal radius rSW by

(5.23)r = r̄

(

1 +
M

2r̄

)2

.

Far away from the black hole rSW and r̄ are identical.
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Figure 5.20: φ component of the retarded (solid red line) and (dashed green line)
negative advanced self-forces acting on a particle with p = 78, e = 0.9. The forces
have been shifted by ∆t ≈ 2[r0(t) − 3.0M ]. Also shown is the self-force calculated
using the weak field expression Eq. 5.20 (blue dotted line).

We calculate the self-force for a particle on an eccentric orbit with e = 0.9 and
p = 78 or p = 780. Fig. 5.20 shows the retarded and (negative) advanced forces shifted
by ∆t ≈ 2[r0(t)− 3.0M ] as well as the analytic force calculated using Eq. (5.20). At
this distance there are still noticeable differences between the (shifted) retarded field
and the weak field expression. One reason for this lies in the choice of a suitable r
coordinate to correspond to the r coordinate in the weak field expression. We use the
areal Schwarzschild r, but the isotropic coordinate r̄ or even the tortoise r∗ could be
used. Neither one yields a better agreement between the two curves.

For p = 780 using a shift of ∆t = 2r0(t) the agreement between numerical data
and analytic expression is excellent as is evident in Fig. 5.21. At this distance r, r̄
and r∗ are indistinguishable.

Investigating the difference between numerical and analytic self-force, we plot
both for a set of circular orbit with 6 ≤ p ≤ 75. Fig. 5.22 displays the analytic and
numerical self-forces. The analytic values were calculated using the isotropic radius r̄,

taking care to account for the different normalizations of r̂, φ̂ and
(
∂
∂r̄

)α
and

(
∂
∂φ

)α

.

The agreement between the weak field expression Eq. (5.20) and the numerical results
is surprisingly good close to the black hole down to p = 6.

5.3 Electromagnetic field—vector potential

Using the vector potential code described in Section 4.4 we can reproduce the results
obtained from the Faraday tensor method discussed in section 5.2. The differences are
small, with the Faraday tensor code generally yielding more accurate results since the
costly numerical differentiation that is necessary in the vector potential calculation is
not required. Nevertheless we can reproduce for example the correct decay behaviour
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Figure 5.21: φ component of the retarded self-force acting on a particle on an orbit
with p = 780, e = 0.9 close to periastron. Shown are the numerical (solid, red)
and shifted analytical (dashed, green) forces. The agreement between numerical and
analytical calculation is excellent, the discrepancy for t . 7500M is due to initial
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of the multipole coefficients for a zoom-whirl orbit as shown in Fig. 5.23.
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Figure 5.23: Multipole coefficients of M2

q
ReFR

(0) for a particle on a zoom-whirl orbit

(p = 7.8001, e = 0.9), calculated using a stepsize of h = 0.125M for the ℓ = 1 modes
and increasing the resolution linearly with ℓ for ℓ > 1. The coefficients are extracted
at t = 1100M when the particle is deep within the zoom phase. Red triangles are
used for the unregularized multipole coefficients F(0),ℓ, squares, diamonds and disks
are used for the partly regularized coefficients after the removal of the A(0), B(0) and
D(0) terms respectively.
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Chapter 6

Conclusions and Future Directions

6.1 Summary

Chapter 2 introduced the theoretical framework this thesis is based on. In particular
Green functions in curved spacetime were introduced and regularized equations of
motion for a point particle were presented.

Chapter 3 introduced the concepts behind the calculation of the regularization
parameters used in the mode-sum scheme of [2]. We calculated the regularization
parameters A, B and D along a geodesic for scalar, electromagnetic and massive
perturbations of Schwarzschild spacetime.

Chapter 4 introduced the fourth and second order characteristic evolution schemes
that we used to solve the scalar and electromagnetic wave equations. We discussed
the issues of gauge violations and constraint equations that have to be dealt with
in the electromagnetic case. We also displayed convergence plots showing that our
numerical code reaches the desired convergence order.

In chapter 5 we displayed results for the scalar and electromagnetic self-force for a
selection of orbits including highly eccentric orbits. For the electromagnetic self-force,
we investigated the effect of the conservative force on the constants of motion.
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6.2 Conclusions

For both the scalar and the electromagnetic self-force we find that the self-force is
strongest when the particle is closest to the black hole. In particular we find that for
zoom-whirl orbits during the whirl phase the self-force is nearly constant and very
close to that of a particle on a circular orbit of the same radius. However there are
also qualitative differences between the two self-forces. In the scalar case we observed
an overshooting of the self-force when the particle enters or leaves the whirl phase.
This effect is much weaker in the electromagnetic case, making it hard to observe at
all.

For the electromagnetic field we find that the numerical results agree with weak
field expressions derived for example in [43] for sufficiently large distances r & 400M
away from the black hole. We also find that the analytic expressions neglect the
retardation of the self-force with respect to the particle motion that is present in the
numerical data. Only when delayed by ∆t ≈ 2r0(t) does the analytical result match
the numerical self-force.

We calculated the effects of the conservative electromagnetic self-force on circu-
lar orbits, where it reduces the angular frequency of the orbit and thus affects the
phasing of the observed waves. We find this effect to be much stronger in the elec-
tromagnetic case than in the scalar case discussed by [32]. In particular during the
nearly circular whirl phase of a zoom-whirl orbit we find that the fractional change
in Ω is approximately 0.06 q2

mM
. Since there are approximately 4 revolutions in each

whirl phase, any waveform ignoring the effect of the conservative self-force picks up
a relative phase error of 0.24 q2

Mm
per radial orbit. Since this error accumulates over

time it will rapidly become out of phase with the true waveform. This statement
however is not directly transferable to the gravitational case since the radius r0 of
the orbit is not a gauge invariant quantity. Therefore we cannot distinguish between
changes in Ω due to effects of the self-force and due to gauge choices. To obtain a
meaningful measure of the effect of the gravitational self-force we need to compare
two gauge invariant quantities, for example Ω and the gauge invariant ut of [45].

6.3 Future outlook

A straightforward continuation of the work presented in this thesis lies in the appli-
cation of the methods developed here to the case of a gravitational perturbation of a
Schwarzschild black hole. The treatment presented for the vector potential of the elec-
tromagnetic field in particular is easily generalized to accommodate a gravitational
perturbation described in the Lorenz gauge.

A technical improvement would be the implementation of a fourth order accurate
finite difference scheme to handle the coupled system of equations governing electro-
magnetic or gravitational perturbations. Sago [46] has recently implemented such a
scheme, based on the work for the scalar case presented here.

Finally a more ambitious future project is the implementation of a self-consistent
(but entirely first order in the perturbation strength q) algorithm to update the
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particle’s motion based on the calculated self-force. Such an approach would require
changes in a number of steps in the method used in this work. First the equation of
motion for the particle is no longer the geodesic equation, instead an acceleration term
has to be included on the right hand side. This affects the regularization parameters
which were calculated under the assumption of geodesic motion, appendix E illustrates
such a calculation. In a practical implementation it is no longer possible to calculate
each ℓ, m mode independently of the others. At each timestep the regularized force
has to be calculated from all the modes in order to update the motion of the particle
which serves as a source for the field. This makes the numerical implementation
of such a scheme technically more complicated, although it is not fundamentally
different from the current implementation. In a practical implementation one is also
forced to consider the demands on computing power. The current implementation
comfortably runs on ordinary desktop machines, each mode requiring several hours
to calculate. However all 45 modes that contribute for ℓ ≤ 8 would require too much
computing time on a single machine. Some parallelization technique other than the
current trivial parallelization will need to be used.
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Appendix A

Notation

Throughout the thesis a large number of symbols are be used. While we introduce
each symbol when it is first used, there might be use for a central location where all
the definitions are presented. This chapter therefore collects some of the definitions
in one place. As we are re-using some of the symbols in the the text, there is a certain
amount of context sensitivity to the meaning of (some) symbols; we will try to point
out these cases.

Throughout the thesis we will deal with a Schwarzschild background spacetime of
mass M , whose metric gαβ is given by the line element

(A.1)
ds2 = −

(

1 − 2M

r

)

dt2 +
(

1 − 2M

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2)

= −
(

1 − 2M

r

)[

dt2 + d(r∗)2
]

+ r2(dθ2 + sin2 θ dφ2) ,

where the first line uses Schwarzschild coordinates t, r, θ and φ while the second one
employs the tortoise coordinate

(A.2)r∗ = r + 2M ln
(

1 − r

2M

)

.

Occasionally we will employ the Eddington-Finkelstein null coordinates

(A.3)u = t− r∗ , v = t+ r∗ ,

which are connected to the characteristic lines of the wave operator.
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We denote the covariant derivative compatible with the metric as

(A.4)∇αv
β ≡ ∂αv

β + Γβαγv
γ ,

where

(A.5)Γαβγ =
1

2
gαµ(∂γgµβ + ∂βgγµ − ∂µgβγ)

are the Christoffel symbols. We will also use a semicolon “;” for the same purpose
and a comma “,” to denote an ordinary partial derivative. Rα

βγδ is the Riemann
tensor defined such that

(A.6)ωα;βγ = ωα;γβ +Rµ
αβγωµ ,

Rαβ = Rµ
αµβ is the Ricci tensor and finally R = Rµ

µ is the Ricci scalar.
We are interested in the motion of a point particle of mass m possibly carrying

a scalar or electromagnetic charge q moving along a geodesic γ : τ 7→ z(τ). Here τ
is the proper time along the world line and uα = dzα

dτ
is its four velocity. Due to the

existence of timelike and angular Killing vectors in Schwarzschild spacetime, the t
and φ components of the uα are conserved. Furthermore, without loss of generality
we restrict the particle to move in the equatorial plane θ = π/2. Therefore the
components of the four velocity are explicitly given by

(A.7)uα = [E/f0, ṙ0, 0, J/r
2
0] ,

where E is the conserved energy, J the conserved angular momentum and ṙ0 ≡ dr0
dτ

is
the radial velocity component. We use the convention that terms bearing a subscript
“0” refer to the location of the particle, denoted by

(A.8)x0 = [t0, r0,
π

2
, ϕ0] .

We use an overdot to denote covariant derivatives along the world line,

(A.9)v̇α ≡ Dvα

dτ
≡ uβ∇βv

α .

We make extensive use of bi-tensorial expressions involving Synge’s world function
σ(x, x̄) and its various derivatives ∇ασ(x, x̄) ≡ σα, ∇ᾱσ(x, x̄) ≡ σᾱ. Initially x and x̄
denote two arbitrary points. When dealing with Green functions, x will be the field
point and the x̄ will be source point. When dealing with expansions along the world
line, x̄ will be on the world line, whereas x will be a point away from the world line.
When dealing with the singular Green function we will also introduce the retarded
point x′ and the advanced point x′′ which lie on the intersection of the world line γ
and the past and future light cones of x, respectively. When writing bi-tensors, we
will denote indices at x̄ using barred letters ᾱ, β̄, etc. We will denote indices at x′

using primed letters α′, β ′, etc. We will denote indices at x′′ using doubly primed
letters α′′, β ′, etc. We will denote indices at x using plain letters α, β, etc. We will
use µ, ν, etc. to denote indices at generic points on a world line, either between x
and x̄ or on γ or for dummy indices that are summed over.
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We introduce a short hand notation for contractions between the Riemann tensor,
its derivatives and either uµ or σµ such that for example

(A.10)Ruσuσ|σ ≡ Rᾱβ̄γ̄δ̄;ε̄u
ᾱσβ̄uγ̄σδ̄σε̄ .

We use
(A.11)[Tµν(x, x̄)] ≡ lim

x→x̄
Tµν(x, x̄)

to denote the coincidence limit of a bi-tensor Tµν(x, x̄) as well as to denote jumps of
field derivatives across the world line

(A.12)[∂nu∂
m
v ψ] ≡ lim

ǫ→0+
[∂nu∂

m
v ψ(t0, r

∗
0 + ǫ) − ∂nu∂

m
v ψ(t0, r

∗
0 − ǫ)] .

No danger of confusing the two uses should arise.
We use ε as a bookkeeping variable to track the order of distance measure between

two points x and x̄. A term X is said to be O(εn) if limx→x̄
X

|x−x̄|n
is a number of

order unity.
We use Φ, Aµ and γµν to denote a scalar field, the electromagnetic potential,

and a gravitational perturbation. For the electromagnetic case only we use Fµν ≡
(

Aν,µ − Aµ,ν

)

to denote the Faraday tensor.

We define the angular metric ΩAB on the two sphere by

(A.13)ΩAB dθA dθB = dθ2 + sin2 θ dφ2 ,

where θA = θ, φ. Its compatible covariant derivative | is such that

(A.14)ΩAB|C = 0 .

The inverse metric ΩAB is the matrix inverse of ΩAB, not the tensor gACgBDΩCD.
The Riemann tensor

(A.15)R
(2)
ABCD = (ΩACΩBD − ΩADΩBC)

is used to commute covariant derivatives on the two sphere only.
We denote angular indices by capital Latin letters A, B, . . . and indices in the t,

r directions by lowercase Latin letters a, b, . . . .
We use the scalar, vector and (odd) tensor harmonics of Regge and Wheeler [40],

which are given by
(A.16a)Zℓm

A ≡ Y ℓm
,A , Xℓm

A ≡ ǫBAY
ℓm
,B ,

(A.16b)Xℓm
AB ≡ Xℓm

A|B −Xℓm
B|A ,

where Y ℓm are the usual scalar spherical harmonics of [47] and ǫAB is the Levi-Civita
tensor on the two sphere. We use ℓ, m to label the spherical harmonics, but also use
m for the mass of the perturbing object; which meaning is intended for m will be
clear from the context.
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Angular integration

In this appendix we reproduce those results of Appendices C and D of [18] which we
use in the main part of the thesis.

B.1 β integration

In calculating the regularization parameters, the only non-vanishing β dependence is
in terms of the form χ−p where

(B.1)χ ≡ 1 − k sin2 β , k ≡ J2

r2
0 + J2

.

Averaging this term over the range −π . . . π we find

(B.2)
〈
χ−p

〉
=

1

2π

∫ π

−π

(1−k sin2 β)−p dβ =
2

π

∫ π/2

0

(1−k sin2 β)−p dβ = F (p, 1
2
; 1; k) ,

where F (a, b; c; z) are the hypergeometric functions. If p is an odd half integer, as
is the case for our calculation, then the hypergeometric functions appearing can be
reduced to a linear combination of complete elliptic integrals

(B.3a)
2

π
K ≡ F (1

2
, 1

2
; 1; k) ,

and

(B.3b)
2

π
E ≡ F (−1

2
, 1

2
; 1; k) .

We note that χ is symmetric around the origin β = 0 and β = π/2. Because of
this, products of powers of χ with sin β, sin β cosβ (antisymmetric around β = 0), or
cosβ (antisymmetric around β = π/2) vanish when averaged over the an interval of
length 2π.
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B.2 Legendre polynomial expansions

The dependence on α is more complex. The terms that appear in the regularization
calculation are of the form

(B.4)(δ2 + 1 − u)p/2, where u = cosα and δ → 0 .

Detweiler et. al. [18] use the generating function of the Legendre polynomials to
derive an expansion in terms of Legendre polynomials

(B.5)(δ2 + 1 − u)p/2 =
∞∑

ℓ=0

Ap
ℓ(δ)Pℓ(u) .

They show that for δ → 0

(B.6a)A−1/2
ℓ =

√
2 +O(ℓδ) , A−k−1/2

ℓ =
2ℓ+ 1

δ2k−1(2k − 1)
(1 +O(ℓδ)), k ≥ 1 ,

and

(B.6b)Ak+1/2 =
(−1)k+12k+3/2[(2k + 1)! ! ]2(2ℓ+ 1)

∏2k+2
i=0 (2ℓ− 2k + 2i− 1)

, k ≥ 0 .
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Spherical harmonics

In this section we list the vector and tensor harmonics used to decompose the Faraday
tensor. The material presented here follows the treatment of Martel [48].

C.1 Metric on the two-sphere

We define the angular metric ΩAB on the two sphere by

(C.1)ΩAB dθA dθB = dθ2 + sin2 θ dφ2 ,

where θA = θ, φ. Its compatible covariant derivative | is such that

(C.2)ΩAB|C = 0 .

The inverse metric ΩAB is the matrix inverse of ΩAB, not the tensor gACgBDΩCD.
The Riemann tensor

(C.3)R
(2)
ABCD = (ΩACΩBD − ΩADΩBC)

is used to commute covariant derivatives on the two sphere only. Note that R
(2)
ABCD

is not just the restriction of the four dimensional Riemann tensor Rαβγδ to the two-
sphere just as ΩAB is not just the restriction of the full metric gαβ to the sphere.

C.2 Scalar harmonics

The vector and tensor harmonics are based on ordinary scalar spherical harmonics
Yℓm. We follow [47] and define the spherical harmonics to be

(C.4)Yℓm(θ, φ) = (−1)ℓ

√

2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos θ)eimφ ,

where Pm
ℓ (x) are the associated Legendre polynomials. We adopt he sign convention

of [47]
(C.5)Ȳℓm = (−1)ℓYℓ,−m .
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The spherical harmonics are the eigenfunctions of the angular part of the Laplacian
operator and satisfy the eigenvalue equation

(C.6)
1

sin θ

∂

∂θ

(

sin θ
∂Yℓm
∂θ

)

+
1

sin2 θ

∂2Yℓm
∂φ2

+ ℓ(ℓ+ 1)Yℓm = 0 .

In terms of the covariant derivative | this can be written as

(C.7)ΩABY ℓm
|AB + ℓ(ℓ+ 1)Yℓm = 0 .

The spherical harmonics form an orthonormal set of basis functions on the sphere

(C.8)

∫

YℓmȲℓ′m′ dΩ = δℓℓ
′

δmm
′

.

Any scalar function on the sphere can be decomposed into spherical harmonic modes
via

(C.9)f(θ, φ) =

∞∑

ℓ=0

ℓ∑

m=−ℓ

f ℓmYℓm(θ, φ) , f ℓm ≡
∫

f(θ, φ)Ȳ ℓm dΩ .

C.3 Vector spherical harmonics

The vector harmonics come in two flavours: even and odd. Even modes transform
as polar vector components under an inversion of the coordinates, while odd modes
transform as axial vector components. We use the vector harmonics of Regge and
Wheeler[40] which are defined by

(C.10)Zℓm
A ≡ Y ℓm

|A , Xℓm
A ≡ ǫ B

A Y ℓm
|B ,

where ǫAB is the Levi-Civita tensor on the sphere (ǫθφ = sin θ). Zℓm
A are even vec-

tor harmonics and Xℓm
A are odd vector harmonics. The set {Zℓm

A , Xℓm
A } forms an

orthogonal, but not orthonormal basis for vectors defined on a two-sphere. We find

(C.11a)

∫

ΩABZℓm
A X̄ℓ′m′

B dΩ = 0 ,

(C.11b)

∫

ΩABZℓm
A Z̄ℓ′m′

B dΩ = ℓ(ℓ+ 1)δℓℓ
′

δmm
′

,

and

(C.11c)

∫

ΩABXℓm
A X̄ℓ′m′

B dΩ = ℓ(ℓ+ 1)δℓℓ
′

δmm
′

,

where we have explicitly spelled out the inverse metric ΩAB used to contract vectors
on the two-sphere.

Using the defining equations Eq. (C.10) it is straightforward to show that the even
and odd vector harmonics satisfy

(C.12a)ΩABZℓm
A|B + ℓ(ℓ+ 1)Y ℓm = 0 ,

(C.12b)ΩABXℓm
A|B = 0 ,

(C.12c)ǫABXℓm
A|B + 2ℓ(ℓ+ 1)Y ℓm = 0 ,
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respectively. Similarly for second derivatives

(C.13a)ΩABZℓm
A|BC + ℓ(ℓ+ 1)Zℓm

C = 0 ,

(C.13b)ΩBCZℓm
A|BC − [1 − ℓ(ℓ+ 1)]Zℓm

A = 0 ,

(C.13c)ΩABXℓm
A|BC = 0 ,

(C.13d)ΩBCXℓm
A|BC − [1 − ℓ(ℓ+ 1)]Xℓm

A = 0 ,

(C.13e)ΩACXℓm
A|BC −Xℓm

B = 0 .

Any vector valued function on the two-sphere can be decomposed into even and
odd vector spherical harmonic moments

(C.14a)vA(θ, φ) =
∞∑

ℓ=0

ℓ∑

m=−ℓ

vℓmZ
ℓm
A + ṽℓmX

ℓm
A ,

(C.14b)vℓm ≡ 1

ℓ(ℓ+ 1)

∫

ΩABvA(θ, φ)Zℓm
B dΩ ,

(C.14c)ṽℓm ≡ 1

ℓ(ℓ+ 1)

∫

ΩABvA(θ, φ)Xℓm
B dΩ ,

where the contraction is calculated using the metric on the two-sphere.

C.3.1 (Antisymmetric) tensor harmonics

It is useful to define an antisymmetric tensor harmonic

(C.15)Xℓm
AB = Xℓm

A|B −Xℓm
B|A ,

satisfying
(C.16)ΩABXℓm

AB = 0 = ΩBCXℓm
BC|A ,

and
(C.17)ΩBCXℓm

AB|C = −ℓ(ℓ + 1)Xℓm
A .

The tensorial harmonics are normalized as

(C.18)

∫

ΩACΩBDXℓm
ABX̄

ℓ′m′

CD dΩ = 2[ℓ(ℓ+ 1)]2δℓℓ′δmm′ .
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Appendix D

Jump Conditions

In this appendix we derive the jump conditions linking the field values to the left and
to the right of the particle.

D.1 Scalar case

In two places in the numerical simulation we introduce piecewise polynomials to ap-
proximate the scalar field ψℓm across the world line. By a piecewise polynomial we
mean a polynomial of the form

(D.1)p(t, r∗) =







N∑

n,m=0

cnm
n!m!

unvm if r∗(u, v) > r∗0

N∑

n,m=0

c′nm
n!m!

unvm if r∗(u, v) < r∗0

,

where u = t − r∗, v = t + r∗ are characteristic coordinates, r∗0 is the position of
the particle at the time t(u, v), and N is the order of the polynomial, which for
our purposes is N = 4 or less. The two sets of coefficients cnm and c′nm are not
independent of each other, but are linked via jump conditions that can be derived
from the wave equation [Eq. (4.7)]. To do so, we rewrite the wave equation in the
characteristic coordinates u and v and reintroduce the integral over the world line on
the right-hand side,

(D.2)−4∂u∂vψ − V ψ =

∫

γ

Ŝ(τ)δ(u− up)δ(v − vp) dτ ,

where Ŝ(τ) = −8πq Ȳℓm(π/2,ϕp(τ))
rp(τ)

is the source term and quantities bearing a subscript

p are evaluated on the world line at proper time τ .
Here and in the following we use the notation

(D.3)[∂nu∂
m
v ψ] = lim

ǫ→0+
[∂nu∂

m
v ψ(t0, r

∗
0 + ǫ) − ∂nu∂

m
v ψ(t0, r

∗
0 − ǫ)]

to denote the jump in ∂nu∂
m
v ψ across the world line. First, we notice that the source

term does not contain any derivatives of the Dirac δ-function, causing the solution
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ψ to be continuous. This means that the zeroth-order jump vanishes: [ψ] = 0. Our
task is then to find the remaining jump conditions at the point (t0, r

∗
0) for n,m ≤ 4.

Alternatively, instead of crossing the world line along a line t = t0 = const we can
also choose to cross along lines of u = u0 = const or v = v0 = const, noting that for
a line of constant v the coordinate u runs from u0 + ǫ to u0 − ǫ to cross from the left
to the right of the world line. Figure D.1 provides a clearer description of the paths
taken.

(u0 − ǫ, v0)

(u0, v0 + ǫ)(u0 + ǫ, v0)

(u0, v0 − ǫ)

ψ−

ψ+

(t0, r
∗

0) = (u0, v0)

Figure D.1: Paths taken in the calculation of the jump conditions. (u0, v0) denotes
an arbitrary but fixed point along the world line γ. The wave equation is integrated
along the lines of constant u or v indicated in the sketch. Note that in order to move
from the domain on the left to the domain on the right, u has to run from u0 + ǫ to
u0 − ǫ. Where appropriate we label quantities connected to the domain on the left
by a subscript “−” and quantities connected to the domain on the right by “+”.

In order to find the jump [∂uψ] we integrate the wave equation along the line
u = u0 from v0 − ǫ to v0 + ǫ

(D.4)−4

∫ v0+ǫ

v0−ǫ

∂u∂vψ dv −
∫ v0+ǫ

v0−ǫ

V ψ dv =

∫

γ

Ŝ(τ)δ(u0 − up)

∫ v0+ǫ

v0−ǫ

δ(v− vp) dv dτ ,

which, after involving
∫ v0+ǫ

v0−ǫ
δ(v − vp) dv = θ(vp − v0 + ǫ)θ(v0 − vp + ǫ) and δ(g(x)) =

δ(x− x0)/ |g′(x0)|, yields

(D.5)[∂uψ] = −1

4

f0

E − ṙ0
Ŝ(τ0) ,

where the overdot denotes differentiation with respect to proper time τ .
Similarly, after first taking a derivative of the wave equation with respect to v and

integrating from u0 + ǫ to u0 − ǫ, we obtain

(D.6)−4

∫ u0−ǫ

u0+ǫ

∂u∂
2
vψ du−

∫ u0−ǫ

u0+ǫ

V ψ du=

∫

γ

Ŝ(τ)

∫ u0−ǫ

u0+ǫ

δ(u−up) du δ′(v0−vp) dτ .

We find

(D.7)
[
∂2
vψ

]
=

1

4

f0

E + ṙ0

d

dτ

[ fp
E + ṙp

Ŝ(τ)
]

|τ=τ0
.

Systematically repeating this procedure we find expressions for the jumps in all
the derivatives that are purely in the u or v direction. Table D.1 lists these results.
Jump conditions for derivatives involving both u and v are obtained directly from the
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(D.8a)[ψ] = 0 ,

(D.8b)[∂uψ] = −1

4
ξ̄−1
0 Ŝ(τ0) ,

(D.8c)[∂vψ] =
1

4
ξ−1
0 Ŝ(τ0) ,

(D.8d)
[
∂2
uψ

]
= −1

4
ξ̄−1
0

d

dτ

(

ξ̄−1
p Ŝ(τ)

)

|τ=τ0
,

(D.8e)
[
∂2
vψ

]
=

1

4
ξ−1
0

d

dτ

(

ξ−1
p Ŝ(τ)

)

|τ=τ0
,

(D.8f)
[
∂3
uψ

]
=

1

4
V ξ0ξ̄

−1
0 [∂uψ] − 1

4
ξ̄−1
0

d

dτ

[

ξ̄−1
p

d

dτ

(

ξ̄−1
p Ŝ(τ)

)]

|τ=τ0
,

(D.8g)
[
∂3
vψ

]
=

1

4
V ξ̄0ξ

−1
0 [∂vψ] +

1

4
ξ−1
0

d

dτ

[

ξ−1
p

d

dτ

(

ξ−1
p Ŝ(τ)

)]

|τ=τ0
,

(D.8h)

[
∂4
uψ

]
= −1

4

[

−1

2
ξ̄−1
0 V

r̈0
E

+
1

2
ξ̄−1
0 V

d

dτ

(fp
E
ξ2
p ξ̄

−1
p

)

|τ=τ0
+ 3ξ0ξ̄

−1
0 ∂uV

+ ξ2
0 ξ̄

−2
0 ∂vV

]

[∂uψ]

+
1

2
ξ0ξ̄

−1
0 V

[
∂2
uψ

]
− 1

4
ξ̄−1
0

d

dτ

(

ξ̄−1
p

d

dτ

{

ξ̄−1
p

d

dτ

[

ξ̄−1
p Ŝ(τ)

]})

|τ=τ0
,

(D.8i)

[
∂4
vψ

]
=

1

4

[

−1

2
ξ−1
0 V

r̈0
E

+
1

2
ξ−1
0 V

d

dτ

(fp
E
ξ̄2
pξ

−1
p

)

|τ=τ0
+ 3ξ̄0ξ

−1
0 ∂vV

+ ξ̄2
0ξ

−2
0 ∂uV

]

[∂vψ]

− 1

2
ξ̄0ξ

−1
0 V

[
∂2
vψ

]
− 1

4
ξ−1
0

d

dτ

(

ξ−1
p

d

dτ

{

ξ−1
p

d

dτ

[

ξ−1
p Ŝ(τ)

]})

|τ=τ0
.

Table D.1: Jump conditions for the derivatives purely in the u or v directions. ṙ and
r̈ are the particle’s radial velocity and acceleration, respectively. They are obtained
from the equation of motion for the particle. ξ̄ ≡ E−ṙ

f
and ξ ≡ E+ṙ

f
were introduced

for notational convenience. Quantities bearing a subscript p are evaluated on the
particle’s world line, while quantities bearing a subscript 0 are evaluated at the par-
ticle’s current position. Derivatives of V with respect to either u or v are evaluated
as ∂uV = −1

2
f∂rV and ∂vV = 1

2
f∂rV , respectively.
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wave equation [Eq. (D.2)]. We see that

(D.9)[∂u∂vψ] = 0 ,

and taking an additional derivative with respect to u on both sides reveals that

(D.10)
[
∂2
u∂vψ

]
= −1

4
V [∂uψ] .

Systematically repeating this procedure we can find jump conditions for each of the
mixed derivatives by evaluating

(D.11)
[
∂n+1
u ∂m+1

v ψ
]

= −1

4
[∂nu∂

m
v (V ψ)] ,

where n,m ≥ 0 and derivatives of V with respect to either u or v are evaluated as
∂uV = −1

2
f∂rV and ∂vV = 1

2
f∂rV , respectively.

The results of Table D.1 and Eq. (D.11) allow us to express the coefficients of the
left-hand polynomial in Eq. (D.1) in terms of the jump conditions and the coefficients
of the right-hand side:

(D.12)c′nm = cnm − [∂nu∂
m
v ψ] .

For N = 4 this leaves us with 25 unknown coefficients cnm which can be uniquely
determined by demanding that the polynomial match the value of the field on the
25 grid points surrounding the particle. When we are interested in integrating the
polynomial, as in the case of the potential term in the fourth-order finite-difference
scheme, we do not need all these terms. Instead, in order to calculate for example the
integral

s
cell
V ψ du dv up to terms of order h5, as is needed to achieve overall O(h4)

convergence, it is sufficient to include only terms such that n+m ≤ 2, thus reducing
the number of unknown coefficients to 6. In this case Eq. (D.1) becomes

(D.13)p(t, r∗) =







∑

m+n≤2

cnm
n!m!

unvm if r∗(u, v) > r∗0

∑

m+n≤2

c′nm
n!m!

unvm if r∗(u, v) < r∗0

.

The six coefficients can then be determined by matching the polynomial to the field
values at the six grid points which lie within the past light cone of the grid point
whose field value we want to calculate.

D.2 Electromagnetic case

D.2.1 Faraday tensor calculation

Since the source term in Eqs. (4.36) – (4.37a) contains a term proportional to δ′(r∗−
r∗0), the field is discontinuous across the world line of the particle. We only calculate
jump conditions in the r∗ direction up to [∂r∗ψ], which we find by substituting the
ansatz

(D.14)ψ = ψ<(t, r∗)θ(r∗0 − r∗) + ψ>(t, r∗)θ(r∗ − r∗0)
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into Eqs. (4.36) – (4.37a) and its t and r∗ derivatives. Demanding in each step that
the singularity structure on the left hand side matches that of the sources (and their
derivatives) on the right hand side yields the jump conditions

(D.15a)[ψ] =
Fψ

f0[(∂tr
∗
0)

2 − 1]
,

and

(D.15b)[∂r∗ψ] = − Gψ

(∂tr∗0)
2 − 1

− ∂2
t r

∗
0 [3 (∂tr

∗
0)

2 + 1]Fψ
f0 [(∂tr∗0)

2 − 1]3
+ 2

∂tr
∗
0 ∂t (Fψ/f0)

[(∂tr∗0)
2 − 1]2

,

where ψ stands for either one of ψ, χ, or ξ.

D.2.2 Vector potential calculation

Since the source term in Eq. (2.53) is singular, the field is only continuous across the
world line of the particle, but not smooth. For our purposes we only need the jump
conditions in the r∗ direction up to [∂2

r∗ψ], which we find by substituting the ansatz

(D.16a)Aℓma (t, r∗) = Aℓma,<(t, r∗)θ(r∗0 − r∗) + Aℓma,>(t, r∗)θ(r∗ − r∗0) ,

(D.16b)vℓm(t, r∗) = vℓm< (t, r∗)θ(r∗0 − r∗) + vℓm> (t, r∗)θ(r∗ − r∗0) ,

(D.16c)ṽℓm(t, r∗) = ṽℓm< (t, r∗)θ(r∗0 − r∗) + ṽℓm> (t, r∗)θ(r∗ − r∗0)

into Eqs. (4.52a) – (4.52c) and its t and r∗ derivatives. Demanding in each step that
the singularity structure on the left hand side matches that of the sources (and their
derivatives) on the right hand side yields the jump conditions

(D.17a)
[
Aℓma

]
=

[
wℓm

]
= 0 ,

(D.17b)
[
∂r∗A

ℓm
a

]
=

E2

E2 − ṙ2
0

Sa ,

(D.17c)
[
∂r∗w

ℓm
]

=
E2

E2 − ṙ2
0

Seven/odd ,

(D.17d)

[
∂2
r∗A

ℓm
a

]
=

(
2ME4

r2
0(E

2 − ṙ2
0)

2
− f0

(3ṙ2
0 + E2)E2r̈0
(E2 − ṙ2

0)
3

)

Sa

+
2ME3ṙ0

r2
0(E

2 − ṙ2
0)

2
Sb − f0

2E2ṙ0
(E2 − ṙ2

0)
2
Ṡa

,

(D.17e)
[
∂2
r∗w

ℓm
]

= −f0
(3ṙ2

0 + E2)E2r̈0
(E2 − ṙ2

0)
3

Seven/odd − f0
2E2ṙ0

(E2 − ṙ2
0)

2
Ṡeven/odd ,

where a, b ∈ {t, r∗}, a 6= b, w ∈ {v, ṽ}.
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Appendix E

Regularization parameters for
accelerated motion

Clearly a calculation of the self-force that only allows for geodesic motion of the
particle is not fully consistent. The self-force affects the motion of the particle so
that it never moves on a geodesic at all. Thankfully the effects of the self-force are
small, of the order of q2

M2 , so that the short term deviations from geodesic motion are
also small. Since the effect of the self-force accumulates secularly, however, a geodesic
treatment of the particle’s motion will certainly be invalid for times of the order of the
radiation reaction time. A formalism capable of handling the self-force experienced
by a particle on an accelerated world line is needed to handle the long term evolution
of the particle.

It turns out that the formalism described in chapter 2 requires only minor changes
to accommodate a non-zero acceleration. The key issue is that acceleration terms only
occur in expansions along the world line as described in section 2.6. Expansions away
from the world line are always done along auxiliary geodesics so that for example
the coordinate expansions of σᾱ and gᾱα do not change. The only expressions that
require changes turn out to be the expansions of ∆± in Eq. (2.79) as well as those for
σ and σα in Eqs. (2.76) and (2.82). Following the steps outlined in section 2.6.1 and
using

(E.1)aµ ≡ uµ;νu
ν , ȧµ ≡ aµ;νu

ν , . . .

we find

(E.2a)
σ(τ) = σ(τ̄ ) + σ̇(τ̄)∆ +

1

2
σ̈(τ̄ )∆2 +

1

6

...
σ (τ̄ )∆3

+
1

24
σ(4)(τ̄)∆4 +

1

120
σ(5)(τ̄ )∆5 +O(∆6) ,

(E.2b)σ =
1

2
σᾱσ

ᾱ ,

(E.2c)σ̇ = σᾱu
ᾱ ,

(E.2d)σ̈ = −1 − 1

3
Ruσuσ +

1

12
Ruσuσ|σ + σᾱa

ᾱ +O(ε4) ,

(E.2e)
...
σ = −1

4
Ruσuσ|u −Raσuσ + σσ̄ ȧ

ᾱ +O(ε3) ,
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(E.2f)σ(4) = −Rauuσ + uᾱȧ
ᾱ + σᾱä

ᾱ +O(ε2) ,

and
(E.2g)σ(5) = −5aᾱȧ

ᾱ +O(ε) ,

where we have introduced the notation

(E.3)Rauuσ ≡ Rᾱβ̄γ̄δ̄a
ᾱuβ̄uγ̄σδ̄

to denote contractions of the Riemann tensor with the acceleration. Note that the
normalization condition uµuµ = −1 implies that aµ and uµ are perpendicular aµuµ =
0; we have used this to simplify the last relation in Eq. (E.2).

Substituting these expressions into Eq. (2.75) and solving for the coefficients
∆1,. . . ,∆4 we find for ∆±

(E.4a)

∆− = [r̄ − s] −
[
aσ(r̄ − s)2

2s

]

+

[
(r̄ − s)3(aσ)

2(3s+ r̄)

8s3

+
(r̄ − s)3(ȧu(s− r̄) − 4ȧσ)

24s
+

(r̄ − s)2Ruσuσ

6s

]

+

[

− (r̄ − s)4(aσ)
3(5s2 + 4r̄s+ r̄2)

16s5
− (r̄ − s)4

48s3

(

2ȧas
3 + 5s2aσȧu − 2s2ȧar̄

− 4saσr̄ȧu − 16saσȧσ − aσ r̄
2ȧu − 4aσr̄ȧσ

)

− (r̄ − s)3

24s3

(

s3Rauuσ + s3äσ− 4s2Raσuσ − s2äσ r̄− s2Rauuσ r̄+6Ruσuσaσs

+ 2Ruσuσaσ r̄
)

− (r̄ − s)2(Ruσuσ|σ +Ruσuσ|us− Ruσuσ|ur̄)

24s

]

+O(ε5) ,

and

(E.4b)

∆+ = [r̄ + s] +

[
aσ(r̄ + s)2

2s

]

+

[
(r̄ + s)3(aσ)

2(3s− r̄)

8s3

+
(r̄ + s)3(ȧu(s+ r̄) + 4ȧσ)

24s
− (r̄ + s)2Ruσuσ

6s

]

+

[
(r̄ + s)4(aσ)

3(5s2 − 4r̄s+ r̄2)

16s5
− (r̄ + s)4

48s3

(

2ȧas
3 − 5s2aσ ȧu + 2s2ȧar̄

− 4saσ r̄ȧu − 16saσȧσ + aσ r̄
2ȧu + 4aσr̄ȧσ

)

− (r̄ + s)3

24s3

(

s3Rauuσ + s3äσ +4s2Raσuσ + s2äσ r̄+ s2Rauuσ r̄+6Ruσuσaσs

− 2Ruσuσaσ r̄
)

− (r̄ + s)2(−Ruσuσ|σ +Ruσuσ|us+Ruσuσ|ur̄)

24s

]

+O(ε5) ,

where we have introduced the notation aσ ≡ aᾱσᾱ and its variants. It has already
been used for contractions involving the Riemann tensor earlier.
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Similarly we find coefficients for the expansion of σα along the world line as in
Eq. (2.82). We find

(E.5a)σ̇α = −gᾱα
(

uᾱ +
1

6
Rᾱσuσ −

1

12
Rᾱσuσσ

)

+O(ε4) ,

(E.5b)σ̈α = −gᾱα
(2

3
Rᾱuuσ −

1

4
Rᾱuuσ|σ −

1

12
Rᾱσσu|u − aᾱ −Rασaσ

)

+O(ε3) ,

(E.5c)
...
σ α = −gᾱα

(1

2
Rᾱuuσ +Rᾱuaσ +Rᾱauσ − ȧᾱ

)

+O(ε2) ,

and

(E.5d)σ(4)
α = −gᾱα

(

Rᾱuau + äᾱ

)

+O(ε) .

Eqs. (E.2), (E.4) and (E.5) are valid for arbitrary values of aα. In a self-force
calculation, the acceleration is small and we only keep terms that are first order or
lower in the acceleration or its derivatives. This simplifies the calculations tremen-
dously, since not only terms quadratic in the acceleration vanish, but also contractions
between uα and ȧα or äα. This follows because the identity

(E.6)0 = uαaα

yields, after taking a derivative with respect to τ on both sides,

(E.7)0 =
D

dτ

(

uαaα

)

= aαaα + uαȧα = uαȧα +O(µ2) ,

where µ is a bookkeeping parameter that keeps track of powers of aα.
As an example we calculate the regularization parameters for the scalar field,

including first order acceleration terms. We proceed exactly as in section 3.6 substi-
tuting Eqs. (E.2), (E.4) and (E.5) for Eqs. (2.76), (2.79) and (2.82) where appropriate.
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First we find the gradient of the singular field to be

ΦS
α = q2gᾱα

({[(

−5r̄(r̄ − s)2(r̄ + s)2

4s7
Ruσuσaσ +

r̄(3r̄4 − 10s2r̄2 + 15s4)

24s5
äσ

+
r̄(3r̄4 − 10s2r̄2 + 15s4)

24s5
Rauuσ +

(r̄ − s)2(r̄ + s)2

2s5
Raσuσ

)

uᾱ

+
(

−(r̄ − s)(r̄ + s)(−s2 + 5r̄2)

4s7
Ruσuσaσ +

(r̄ − s)2(r̄ + s)2

8s5
äσ

+
(r̄ − s)2(r̄ + s)2

8s5
Rauuσ +

(r̄ − s)r̄(r̄ + s)

2s5
Raσuσ

)

σᾱ −
(r̄ − s)2(r̄ + s)2

2s5
aσRᾱuuσ

− (r̄ − s)r̄(r̄ + s)

4s5
aσRᾱσuσ +

(r̄ − s)2(r̄ + s)2

4s5
aᾱRuσuσ

+
−6s2r̄2 + r̄4 − 3s4

24s3
Rᾱuau +

r̄(−3s2 + r̄2)

6s3
Rᾱuas +

r̄(−3s2 + r̄2)

6s3
Rᾱaus

+
(r̄ − s)(r̄ + s)

12s3
Rᾱσas +

−6s2r̄2 + r̄4 − 3s4

24s3
äᾱ

]

ǫ

+
[

−(r̄ − s)2(r̄ + s)2

2s5
ȧσuᾱ −

(r̄ − s)r̄(r̄ + s)

2s5
ȧσσᾱ +

r̄(−3s2 + r̄2)

6s3
ȧᾱ

]

+
[

−3(r̄ − s)r̄(r̄ + s)

2s5
aσuᾱ −

(−s2 + 3r̄2)

2s5
aσσᾱ +

(r̄ − s)(r̄ + s)

2s3
aᾱ

]

ǫ−1

}

µ

+
[((r̄ − s)2(r̄ + s)2

8s5
Ruσuσ|u −

(r̄ − s)r̄(r̄ + s)

8s5
Ruσuσ|σ

)

uᾱ

+
((r̄ − s)r̄(r̄ + s)

8s5
Ruσuσ|u −

(−s2 + 3r̄2)

24s5
Ruσuσ|σ

)

σᾱ −
(r̄ − s)(r̄ + s)

24s3
Rᾱσσu|u

− (r̄ − s)(r̄ + s)

8s3
Rᾱuuσ|σ −

r̄

12s3
Rᾱσuσ|σ +

r̄(−3s2 + r̄2)

12s3
Rᾱuuσ|u

]

ǫ

+
[(r̄ − s)r̄(r̄ + s)

2s5
Ruσuσuᾱ +

(−s2 + 3r̄2)

6s5
Ruσuσσᾱ +

(r̄ − s)(r̄ + s)

3s3
Rᾱuuσ

+
r̄

6s3
Rᾱσuσ

]

+
[ r̄uᾱ + σᾱ

s3

]

ǫ−2

)

.

(E.8)

We submit the expression in Eq. (E.8) to the multipole decomposition procedure
outlined in section 3.6. After a lengthy calculation we find the regularization param-
eters to be

(E.9a)A(0) =

√
r0ṙ0 sign(∆)√

r0 − 2M(r2
0 + J2)

,

(E.9b)A(+) = − E
√
r0 sign(∆)√

r0 − 2M(r2
0 + J2)

eiϕ0 ,
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as well as

(E.10a)

B(0) =
[(

− r
5/2
0 (J2 − r2

0)Eaφ

(r2
0 + J2)3/2πJ

√
r0 − 2M

+

√
r0 − 2Mat

√

(r2
0 + J2)r0π

)

µ

− 2r
3/2
0 ṙ0E

(r2
0 + J2)3/2π

√
r0 − 2M

]

E

+
[

− r
9/2
0 Eaφ

(r2
0 + J2)3/2(r0 − 2M)1/2Jπ

µ+
r
3/2
0 ṙ0E

(r2
0 + J2)3/2π

√
r0 − 2M

]

K ,

(E.10b)

B(+) =

{[( (J2 − r2
0)r

5/2
0 ṙ0aφ√

r0 − 2MJ(r2
0 + J2)3/2π

−
√
r0ar

√

r2
0 + J2

√
r0 − 2Mπ

+
iaφ

√

r2
0 + J2r3

0πJ
2

)

µ− i(
√
r0 − 2M − 2

√
r0)ṙ0

√
r0 − 2MπJ

√

r2
0 + J2

1/2

+
2r

3/2
0 E2

(r2
0 + J2)3/2π

√
r0 − 2M

−
√
r0 − 2M

√

r2
0 + J2r

3/2
0 π

]

E

+

[( aφṙ0

(r2
0 + J2)3/2

√
r0 − 2Mr

9/2
0 Jπ

− iaφ
√

r2
0 + J2r3

0πJ
2

)

µ

+
i(
√
r0 − 2M − 2

√
r0ṙ0)

π
√
r0 − 2M

√

r2
0 + J2J

− r
3/2
0 E2

(r2
0 + J2)3/2π

√
r0 − 2M

+
2r0 −

√

r0(r0 − 2M)

r2
0π

√

r2
0 + J2

]

K
}

eiϕ0 .

The C terms vanish as they did for the geodesic case.
While we did obtain expressions for the D terms, they are much to long to be

displayed even in an appendix. Comparing them to the B terms we find that the D
terms depend not just on the acceleration, but also on its first and second derivatives
with respect to proper time.

These regularization parameters agree with the results obtained in [16] for a ra-
dially infalling particle.
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